Quaternions, an overview.

The complex numbers are, numbers that have two components called real and imaginary that can often be interpreted as 2 dimensions. A complex number is normally written as a + ib where $i^2 = -1$ and a and b are two real values quantities.

This idea can be extended to higher dimensions, but it turns out that 4 components have useful properties. These are called quaternions and are attributed to *Sir William Rowan Hamilton* who published a major analysis in 1844 called "On a Species of Imaginary Quantities Connected with a Theory of Quaternions" in the Proceedings of the Royal Irish Academ (2, pp 424-434).

Definition

In this discussion we will write a quaternion "Q" as

$$Q = r + ai + bj + ck$$

Where r is the real component and a; b; c real values. This 4 (r;a;b;c) might be considered to be a vector in the 4D quaternion space.

When performing operations on complex numbers whenever one encounters i^2 then one knows that is equal to the simpler -1. There are similar but slightly more complicated relationships between *i*; *j*; *k* in quaternion space. They are as follows:

$$i^{2} = j^{2} = k^{2} = -1$$

 $ij = k$ $jk = i$ $ki = j$
 $ji = -k$ $kj = -i$ $ik = -j$

Note that the order in which *i;j;k* appears in an expression is important. Also note that there is no linear relationship between *i;j;k*.

Addition

Addition (or subtraction) of two quaternions $Q_1 = r_1 + a_1 i + b_1 j + c_1 k$ and $Q_2 = r_2 + a_2 i + b_2 j + c_2 k$ is performed as follows.

$$Q_1 + Q_2 = r_1 + r_2 + (a_1 + a_2) i + (b_1 + b_2) j + (c_1 + c_2) k$$

Congujate

The congujate of $Q = Q^* = r - a i - b j - c k$.

Multiplication

Multiplication of two quaternions is somewhat involved but follows directly from the relationships above.

$$Q_{1} Q_{2} = [r_{1} r_{2} - a_{1} a_{2} - b_{1} b_{2} - c_{1} c_{2}] + [r_{1} a_{2} + a_{1} r_{2} + b_{1} c_{2} - c_{1} b_{2}]i + [r_{1} b_{2} + b_{1} r_{2} + c_{1} a_{2} - a_{1} c_{2}]j + [r_{1} c_{2} + c_{1} r_{2} + a_{1} b_{2} - b_{1} a_{2}]k$$

Note that quaternion multiplication is not commutative, that is, $Q_1 Q_2$ is NOT the same as $Q_2 Q_1$

Length (modulus)

The length (magnitude) of a quaternion is the familiar coordinate length in 4 dimensional space.

 $|Q| = sqrt(QQ^*)$

where Q* is the congujate (see later) which expands to

$$|Q| = sqrt(r^2 + a^2 + b^2 + c^2)$$

and

$$|Q_1 Q_2| = |Q_1| |Q_2|$$

Inverse

The inverse of a quaternion Q^{-1} such that $QQ^{-1} = 1$ is given by

$$Q^{-1} = \frac{r - ai - bj - ck}{\left|Q\right|^2}$$

The inverse of a normalised quaternion is simply the congujate, otherwise the magnitude of the inverse is 1/|Q|. So the above expression normalises the quaternion and then scales by 1/|Q|.

Division

Division of Q_1 by Q_2 is as follows

$$\frac{Q_1}{Q_2} = \frac{Q_1(2r_2 - Q_2)}{|Q_2|^2}$$

Exponential

If $m = sqrt(a^2 + b^2 + c^2)$ and v is the unit vector (a,b,c) / m then the exponential of the quaternion Q is

$$exp(Q) = exp(r) [cos(m), v sin(m)]$$

Polar Coordinates

The equivalent to polar coordinates in quaternion space are

r = |Q| cos(theta1)

a = |Q| sin(theta1) cos(theta2)

 $b = |Q| \sin(\text{theta1}) \sin(\text{theta2}) \cos(\text{theta3})$

c = |Q| sin(theta1) sin(theta2) sin(theta3)

theta1 is known as the amplitude of the quaternion, theta2 and theta3 are the latitude (or colatitude) and longitude respectively. The representative point of a quaternion is the normalised vector (a,b,c), that is, where (a,b,c) intersects the unit sphere centered at the origin.

Rotation of a vector about another vector

To rotate a 3D vector "p" by angle theta about a (unit) axis "r" one forms the quaternion

$$Q_1 = (o, p_x, p_y, p_z)$$

and the rotation quaternion

 $Q_2 = (\cos(\text{theta}/2), r_x \sin(\text{theta}/2), r_y \sin(\text{theta}/2), r_z \sin(\text{theta}/2)).$

The rotated vector is the last three components of the quaternion

$$Q_3 = Q_2 Q_1 Q_2^*$$

It is easy to see that rotation in the opposite direction (*-theta*) can be achieved by reversing the order of the multiplication.

$$Q_3 = Q_2^* Q_1 Q_2$$

Note also that the quaternian Q_2 is of unit magnitude, and needs to be in order to be a valid rotation.

Converting a quaternion to a matrix

Given a quaternion rotation the corresponding 3x3 rotation matrix M is given by

$$M = \begin{pmatrix} 1-2b^2-2c^2 & 2ab-2rc & 2ac+2rb \\ 2ab+2rc & 1-2a^2-2c^2 & 2bc-2rc \\ 2ac-2rb & 2bc+2rc & 1-2a^2-2b^2 \end{pmatrix}$$