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1 INTRODUCTION  
 
Parallel processors have become increasingly common and 
more densely packed in recent years. In the near future, these 
systems will provide many conventional processors packed 
together into chip multiprocessors (CMPs) or single-board 
systems interconnected with some form of high-bandwidth 
communication bus or network. With these systems, enough 
bandwidth can be provided between processors to even allow 
the broadcast of significant amounts of data and/or protocol 
overhead between all of the processor nodes over a low-
latency unordered interconnect [4, 5, 7, 19, 24, 26]. 
Overwhelmingly, designers of today�s parallel processing 
systems have chosen to use one of two common models to 
coordinate communication and synchronization in their 
systems: message passing or shared memory. Given the 
advent of newer systems with immense interprocessor 
bandwidth, however, we wondered if it would be possible to 
take advantage of this bandwidth to simplify the protocols 
used to manage communication and synchronization between 
processors in a system.  
 
Message-passing is a system that supports relatively simple 
hardware configurations, such as clusters of workstations, but 
makes programmers work hard to take advantage of the 
hardware. The programming model is one of many 
independent nodes that must pass explicit messages between 
each other when communication is necessary. Messages also 
implicitly synchronize processors as they are sent and 
received. This technique typically makes the underlying 
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hardware much simpler by making programmers concentrate 
their communication into a relatively small number of large 
data packets that can flow throughout the system with 
relatively relaxed latency requirements. To facilitate this, 
programmers must divide data structures and execution into 
independent units that can execute efficiently on individual 
processor nodes.  
 
In contrast, shared memory adds additional hardware to 
provide programmers with an illusion of a single shared 
memory common to all processors, avoiding or minimizing 
the problem of manual data distribution. This is accomplished 
by tracking shared cache lines as they move throughout the 
system either through the use of a snoopy bus-coherence 
protocol over a shared bus [13, 28] or through a directory-
based coherence mechanism over an unordered interconnect 
[3, 23]. Programmers must still divide their computation into 
parallel tasks, but all tasks can work with a single, common 
dataset resident in memory. While this model significantly 
reduces the difficulty inherent in parallel programming, 
especially for programs that exhibit dynamic communication 
or fine grain sharing, the hardware required to support it can 
be very complex [7]. In order to provide a coherent view of 
memory, the hardware must track where the latest version of 
any particular memory address can be found, recover the 
latest version of a cache line from anywhere on the system 
when a load from it occurs, and efficiently support the 
communication of large numbers of small, cache-line-sized 
packets of data between processors. All this must be done 
with minimal latency, too, since individual load and store 
instructions are dependent upon each communication event. 
Achieving high performance despite the presence of long 
interprocessor latencies is therefore a problem with these 
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systems. Further complicating matters is the problem of 
sequencing the various communication events constantly 
passing throughout the system on the granularity of 
individual load and store instructions. Unfortunately, shared 
memory does not provide the implicit synchronization of 
message passing, so hardware rules — memory consistency 
models [1] — have been devised and software synchronization 
routines have been carefully crafted around these rules to 
provide the necessary synchronization. Over the years, the 
memory consistency model has progressed from the easy-to-
understand but sometimes performancelimiting sequential 
consistency [12, 22] to more modern schemes such as relaxed 
consistency [2, 9, 11]. The complex interaction of coherence, 
synchronization and consistency can potentially make the job 
of parallel programming on shared memory architectures 
difficult.  
 
Both of these models therefore have drawbacks — message 
passing makes software design difficult, while shared memory 
requires complex hardware to get only a slightly simpler 
programming model. Ideally, we would like a communication 
model that, without raising memory consistency issues, 
presents a shared memory model to programmers and 
significantly reduces the need for hardware to support 
frequent, latency-sensitive coherence requests for individual 
cache lines. At the same time, we would like to be able to take 
advantage of the inherent synchronization and latency-
tolerance of message passing protocols. Replacing 
conventional, cache-line oriented coherence protocols and 
conventional shared memory consistency models with a 
Transactional memory Coherence and Consistency (TCC) model 
can accomplish this.  
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2 SYSTEM OVERVIEW  
 
Processors such as those in Fig. 1 operating under a TCC 
model continually execute speculative transactions.  

 
 

Figure 1: A sample 3-node TCC system. 
 
A transaction is a sequence of instructions that is guaranteed 
to execute and complete only as an atomic unit. Each 
transaction produces a block of writes called the write state 
which are committed to shared memory only as an atomic 
unit, after the transaction completes execution. Once the 
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transaction is complete, hardware must arbitrate system-wide 
for the permission to commit its writes. After this permission 
is granted, the processor can take advantage of high system 
interconnect bandwidths to simply broadcast all writes for the 
entire transaction out as one large packet to the rest of the 
system. Note that the broadcast can be over an unordered 
interconnect, with individual stores separated and reordered, 
as long as stores from different commits are not reordered or 
overlapped. Snooping by other processors on these store 
packets maintains coherence in the system, and allows them to 
detect when they have used data that has subsequently been 
modified by another transaction and must rollback — a 
dependence violation. Combining all writes from the entire 
transaction together minimizes the latency sensitivity of this 
scheme, because fewer interprocessor messages and 
arbitrations are required, and because flushing out the write 
state is a one-way operation. At the same time, since we only 
need to control the sequencing between entire transactions, 
instead of individual loads and stores, we leverage the commit 
operation to provide inherent synchronization and a greatly 
simplified consistency protocol.  
This continual speculative buffering, broadcast, and 
(potential) violation cycle, illustrated in Fig. 3a, allows us to 
replace conventional coherence and consistence protocols 
simultaneously:  
 
Consistence: Instead of attempting to impose some sort of 
ordering rules between individual memory reference 
instructions, as with most consistency models, TCC just 
imposes a sequential ordering between transaction commits. 
This can drastically reduce the number of latency-sensitive 
arbitration and synchronization events required by low-level 
protocols in a typical multiprocessor system. As far as the 
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global memory state and software is concerned, all memory 
references from a processor that commits earlier happened 
“before” all memory references from a processor that commits 
afterwards, even if the references actually executed in an 
interleaved fashion. A processor that reads data that is 
subsequently updated by another processor�s commit, before 
it can commit itself, is forced to violate and rollback in order to 
enforce this model. Interleaving between processors� memory 
references is only allowed at transaction boundaries, greatly 
simplifying the process of writing programs that make fine-
grained access to shared variables. In fact, by imposing an 
original sequential program�s original transaction order on 
the transaction commits, we can effectively let the TCC system 
provide an illusion of uniprocessor execution to the sequence of 
memory references generated by parallel software.  
 
Coherence: Stores are buffered and kept within the processor 
node for the duration of the transaction in order to maintain 
the atomicity of the transaction. No conventional, MESI-style 
cache protocols are used to maintain lines in “shared” or 
“exclusive” states at any point in the system, so it is legal for 
many processor nodes to hold the same line simultaneously in 
either an unmodified or speculatively modified form. At the 
end of each transaction, the broadcast notifies all other 
processors about what state has changed during the 
completing transaction. During this process, they perform 
conventional invalidation (if the commit packet only contains 
addresses) or update (if it contains addresses and data) to keep 
their cache state coherent. Simultaneously, they must 
determine if they may have used shared data too early. If they 
have read any data modified by the committing transaction 
during their currently executing transaction, they are forced to 
restart and reload the correct data. This hardware mechanism 
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protects against true data dependencies automatically, 
without requiring programmers to insert locks or related 
constructs. At the same time, data antidependencies are 
handled simply by the fact that later processors will 
eventually get their own turn to flush out data to memory. 
Until that point, their “later” results are not seen by 
transactions that commit earlier (avoiding WAR 
dependencies) and they are able to freely overwrite previously 
modified data in a clearly sequenced manner (handling WAW 
dependencies in a legal way). Effectively, the simple, 
sequentialized consistence model allows the coherence model 
to be greatly simplified, as well.  
 
Although some of the details and implementation alternatives 
add more complexity, this simple cycle is the backbone of the 
TCC system and underlies all other descriptions of the system 
throughout the rest of this paper.  
 

2.1 Programming Model 
For programmers, there is really only one requirement for 
successful transactional execution: the programmer must 
insert transaction boundaries into their parallel code 
occasionally (possibly with some hardware aid, see Section 
4.2). No complex sequences of special instructions such as 
locks, semaphores, or monitors are ever necessary to control 
low-level interprocessor communication and synchronization. 
In many respects, this model is very similar to the technique of 
performing manual parallelization with assistance from 
thread-level speculation (TLS, see Section 3.2) hardware that 
we previously investigated in [29]. There is only one hard rule 
that programmers must keep in mind. Transaction breaks 
should never be inserted during the code between a load and 
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any subsequent store of a shared value (i.e. during a 
conventional lock�s critical region). Unlike with conventional 
parallelization, other “errors” will only cause reduced 
performance, instead of incorrect execution.  
 
As a result of this model, parallelizing code with TCC is a very 
different process from conventional parallel programming 
because it allows programmers to make intelligent tradeoffs 
between programmer effort and performance. Basic 
parallelization can quickly and easily be done by identifying 
potentially interesting transactions, and then programmers 
can use feedback from runtime violation reports to refine their 
transaction selection in order to get significantly greater 
speedups. In a simplified form, parallel programming with 
TCC can be summarized as a threestep process:  
 
Divide into Transactions: The first step in the creation of a 
parallel program using TCC is to coarsely divide the program 
into blocks of code that can run concurrently on different pro- 
• cessors. This is similar to conventional parallelization, which 
also requires that programmers find and mark parallel 
regions. However, the actual process is much simpler with 
TCC because the programmer does not need to guarantee that 
parallel regions are independent, since the TCC hardware will 
catch all dependence violations at runtime.  
 
Specify Order: The programmer can optionally specify an 
ordering between transactions to maintain a program order 
that must be enforced. By default, no order is imposed 
between the commits of the various transactions, so different 
processors may proceed independently and commit as they 
encounter end-of-transaction instructions. However, most 
parallel applications have places where certain transactions 
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must complete before others. This situation can be addressed 
by assigning hardware-managed phase numbers to each 
transaction. At any point in time, only transactions from the 
“oldest” phase present in the system are allowed to commit. 
Transactions from “newer” phases are simply forced to stall 
and wait if they complete before all “older” phases have 
completed.  

 
 

Figure 2: Timing illustration of how transactions  
(numbered blocks) running on three different processors are 

forced to commit by phase number sequence. 
 
Fig. 2 illustrates how most important transaction sequencing 
events can be handled using phase numbers. The top half of 
the figure shows groups of unordered transactions, for which 
we simply keep the phase numbers identical. To form a 
barrier, all processors increment the phase number of 
transactions by 1 as they cross the barrier point, so that all pre-
barrier transactions are forced to commit before any post-
barrier transactions can complete. To parallelize sequential 
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code in a TLS-like fashion, we simply increment the phase 
number by 1 for each transaction created from the original 
sequential code, as is illustrated in the bottom half of Fig. 2. 
This forces the commits to occur in-order, which in turn 
guarantees that the parallel execution will mimic the 
load/store behavior of the original program. In addition to 
being easy to implement in hardware, this scheme is also 
guaranteed to be deadlockfree, since at least one processor is 
always running the “oldest” phase, and therefore able to 
commit when it completes. Also, in order to allow several 
phase-progression sequences to occur simultaneously in 
different parts of the system, we could add an optional 
sequence number to the hardware in order to separate out these 
different groups of phasings.  
 
Performance Tuning: After transactions are selected and 
ordered, the program can be run in parallel. The TCC system 
can automatically provide informative feedback about where 
violations occur in the program, which can direct the 
programmer to perform further optimizations. These 
optimizations usually improve code by making it follow these 
guidelines:  
1. Transactions should be chosen to maximize parallelism and 
minimize the number of inter-transaction data dependencies. 
A few occasional violations are acceptable, but regularly 
occuring ones will largely eliminate the possibility for 
speedup in most systems.  
2. Large transactions are preferable, when possible, as they 
amortize the startup and commit overhead time better than 
small ones, but . . . .  
3. Small transactions should be used when violations are 
frequent, to minimize the amount of lost work, or when large 
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numbers of memory references tend to overflow the available 
memory buffering.  
 
This streamlined parallel coding model therefore allows 
parallel programmers to focus on providing better 
performance, instead of spending most of their time simply 
worrying about correctness.  
 

2.2 Basic TCC System  
TCC will work in a wide variety of multiprocessor hardware 
environments, including a variety of CMP configurations and 
smallscale multichip multiprocessors. TCC cannot scale 
infinitely, for two reasons. First, TCC requires system-wide 
arbitration for the commit permission, either through a 
centralized arbiter or distributed algorithm. Second, TCC 
relies on broadcast to send the commit packets throughout the 
system. The algorithm is currently dependent upon some form 
of broadcast, although we examine some mechanisms to 
reduce bandwidth requirements in Section 6.3. Our scheme 
can work within any system that can support these two 
requirements in an efficient manner.  
 
Individual processor nodes within a TCC system must have 
some features to provide speculative buffering of memory 
references and commit control, as was illustrated in Fig. 1. 
Each “node” consists of a processor core plus its own local 
cache hierarchy. The exact structure of the local cache 
hierarchy makes no difference to the coherence scheme, as 
long as all of the included lines maintain the following 
information in some way:  
Read bits: These bits are set on loads to indicate that a cache 
line (or portion of a line) has been read speculatively during a 
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transaction. These bits are snooped while other processor 
nodes commit to determine when data has been speculatively 
read too early. If a write committed by another processor 
modifies an address cached locally with its read bit set, then a 
violation has been detected and the processor is interrupted so 
that it can revert back to its last checkpoint and start re-
executing from there. In a simple implementation, one read bit 
per line is sufficient. However, it may be desirable to include 
multiple bits per line in order to eliminate false violation 
detections caused by reads and writes to different words in 
the same line.  
 
Modified bit: There must be one for every cache line. These 
are set by stores to indicate when any part of the line has been 
written speculatively. These are used to invalidate all 
speculatively written lines at once when a violation is 
detected. 
 
In addition, we can optionally include an extra set of bits in 
each cache line to help avoid false violations that could be 
caused by reads and writes to the same part of a cache line:  
 
Renamed bits: These optional bits must be associated with 
individual words (or even bytes) within each cache line. They 
act much like “modified” bits, except that they can only be set 
if the entire word (or byte) is written by a store, instead of just 
any part of the associated region. Because individual stores 
can typically only write a small part of a cache line at a time, 
there must almost always be a large number of these bits for 
each line. If set, any subsequent reads from these words 
(bytes) do not need to set read bits, because they are 
guaranteed to only be reading locally generated data that 
cannot cause violations. Since these bits are optional, they can 
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be omitted entirely or only partially implemented (for 
example, in a node’s L1 cache but not in its L2).  

 
Cache lines with set read or modified bits may not be flushed 
from the local cache hierarchy in mid-transaction. If cache 
conflicts or capacity constraints force this to occur, the 
discarded cache lines must be maintained in a victim buffer 
(which may just hold the tag and read bit(s) if a line is 
unmodified) or the processor must be stalled temporarily. In 
the latter case, it must request commit permission, a process 
that may take some time if processors with “older” phases are 
present, and then hold this permission until the transaction 
completes execution and commits. This solution works 
because read and modified bits do not need to be maintained 
once commit permission has been obtained, as all “earlier” 
commits will have been guaranteed to complete at that point. 
However, since holding the commit permission for extended 
periods of time can have a severely detrimental impact on the 
overall system performance, it is critical that this mechanism 
only be used for infrequent, very long transactions.  
 
The processor core must also have a way to checkpoint its 
register state at each commit point in order to provide rollback 
capabilities. This could be done either in hardware, by flash-
copying the register state to a shadow register file at the 
beginning of each transaction, or in software, by executing a 
small handler to flush out the live register state at the start of 
each transaction. The hardware scheme could be incorporated 
into traditional register renaming hardware by flash-copying 
the register rename tables instead of the registers themselves. 
The software scheme would not require any modifications of 
the core at all, but such a scheme would obviously incur a 
higher overhead on the processor core at each commit.  
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Finally, the node must have a mechanism for collecting all of 
its modified cache lines together into a commit packet. This 
can be implemented as a write buffer completely separate 
from the caches or as an address buffer that maintains a list of 
the line tags that contain data that needs to be committed. We 
shall examine the size of write state to determine the amount 
of hardware that would be required to implement a typical 
write buffer beside the caches. The interface between this 
buffer and the system network should have a small “commit 
control” table that tracks the state (phase numbers) of other 
processors in the system in order to determine when it is 
within the “oldest” phase and free to arbitrate for commits. 
This simple mechanism can eliminate a great deal of spurious 
arbitration request traffic.  
 
 

3 RELATED WORK  
 
This paper draws upon ideas from two existing bodies of 
work, database transaction processing systems and thread-
level speculation (TLS), and applies them to the field of cache 
coherent, shared memory parallel architectures. This section 
compares TCC with some key ideas from these two fields of 
knowledge.  
 

3.1 Database Transaction Processing  
Transactions are a core concept in database management 
systems (DBMS) that provide significant benefits to the 
database programmer [15]. In DBMS, transactions provide the 
properties of atomicity, consistency, isolation, and durability 
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(ACID). We have borrowed the fully transactional 
programming model from databases because we think that 
these properties will greatly simplify the development of 
generic parallel programs. The main difference between the 
transactions defined by the database programmer and those 
used by parallel programmers is size. The number of 
instructions executed and the amount of state generated by 
most parallel program transactions is much smaller than those 
used in database transactions. Therefore, a key element to 
using transactions for general purpose parallel programming 
is an efficient, hardware-based transaction execution 
environment.  
 
The designers of DBMS have explored a wide range of 
implementation options for executing transactions while 
providing high transaction throughput. The work on 
optimistic concurrency [21] is the most relevant to the ideas 
we explore in this paper. Optimistic concurrency controls 
access to shared data without using locks by detecting 
conflicts and backing up transactions to ensure correct 
operation. In transactional coherence and consistency we 
extend the ideas of optimistic concurrency from DBMS to 
memory system hardware.  
 

3.2 Previous Work in Transactions and TLS  
From the hardware side, the origin of this work was in the 
early transactional memory work done by Herlihy [17] a 
decade ago. Our transactions have identical semantics to the 
model proposed in this paper. However, they proposed only 
using transactions occasionally, replacing only the critical 
regions of locks. As a result, it was more of an adjunct to 
existing shared memory consistency protocols than a complete 
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replacement. By running transactions at all times, instead of 
just occasionally, we are able to use the same concepts to 
completely replace conventional coherence and consistency 
techniques. However, the larger number of transaction 
commits in our model puts a great deal of pressure on 
interprocessor communication bandwidth, so practically 
speaking it would have been difficult to implement a model 
like ours a decade ago.  
 
Our work also draws upon the wide variety of thread-level 
speculation (TLS) literature that has been published over the 
course of the past several years from the Multiscalar project 
[33], Stampede [36], Torrellas at the University of Illinois [20], 
and the Hydra project [16]. In fact, a TCC system can actually 
implement a very loosely coupled TLS system if all 
transactions are ordered sequentially. In this respect, it most 
closely resembles the Stampede design of a TLS system, as 
their TLS threads only flush out data from the cache to global 
memory at the end of each thread, much like our commits. 
However, Stampede layers the TLS support on top of a 
conventional cache coherence protocol. The other TLS systems 
provide much tighter coupling between processors and more 
automatic forwarding of data between executing threads, and 
are thereby further removed from TCC. As long as forwarding 
of data between speculative threads is not critical for an 
application, however, TCC�s performance in “all ordered 
transaction” mode can actually be competitive with these 
dedicated TLS designs.  
 
Looking at the proposed hardware implementations, our 
example implementation is most similar to the Stampede or 
Hydra designs in its focus on a multiprocessor with a few 
flash-clearable bits attached to the private caches. However, 
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we chose this example design solely because it is an easy first 
step. A buffering scheme such as the ARB [10] or SVC [14], as 
proposed by the Multiscalar group, would also be able to 
handle the speculative buffering tasks required by TCC.  
 
Comparisons can also be made between TCC and other 
proposals to adapt speculative mechanisms to improve the 
performance of conventional parallel programming models. 
For example, Martinez and Torrellas [25], Rajwar and 
Goodman [30, 31], and Rundberg and Stenstrom [32] have 
independently proposed how to speculate through locks and 
past barriers in recent papers. TCC performs both of these 
operations during normal operation. All execution now 
consists of transactions that can speculate through one or 
several different conventional locks at once, while speculation 
past phase barriers can occur if the implementation of TCC is 
double-buffered.  
 

4 TCC IMPROVEMENTS  
 
The basic protocols used to construct a TCC system and how 
they compare with existing coherence and consistency 
protocols are presented here. There are extensions and 
improvements to these basic protocols that could improve 
performance or reduce the bandwidth requirements of TCC in 
a real system environment. Let’s see some of these potential 
improvements.  
 

4.1 Double Buffering  
Double buffering implements extra write buffers and 
additional sets of read and modified bits in every cache line, 
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so that successive transactions can alternate between sets of 
bits and buffers. This mechanism allows a processor to 
continue working on the next transaction even while the 
previous one is waiting to commit or committing, as is 
illustrated in Fig. 3 for several combinations.  

 
Figure 3: The effect of double buffering: 

 a) a sample transaction timeline, b) double buffering of all 
speculative state, c) double buffering for write buffer but 

not read bits in cache, and d) pure single buffering. 
 



The TCC Research Project 21 

In addition,  this extension automatically lets processors that 
arrive at barriers early continue to speculate past them, as in 
[25, 30, 31, 32], without any additional hardware or API 
considerations.  
 
The major expense of this scheme is in replicating additional 
sets of speculative cache control bits and write buffers. Adding 
buffers probably will not scale well past one additional set, but 
that first set (providing double buffering) should provide most 
of the potential benefit. If hardware register checkpoints are 
used, then additional sets of shadow registers would also be 
required to allow checkpoints to be taken at the beginning of 
each speculative transaction supported by hardware. Only one 
copy of the optional renamed bits is ever necessary, since 
these do not serve any further function after a transaction 
finishes executing instructions. All of these special bits should 
be flash-clearable at the end of transactions, to avoid tying up 
the hardware for many cycles on each commit, and it is also 
helpful if the modified bits can flashinvalidate their lines 
when the transaction aborts on a violation. More sophisticated 
versioning protocols, similar to those used in the SVC 
implementation of buffering for TLS [14], could be used to 
eliminate many of these circuit design issues, but we believe 
that flash-clearable bits are feasible in tag SRAMs.  
 

4.2 Hardware-Controlled Transactions  
In the base TCC system, programmers explicitly mark all 
transaction boundaries. However, it is also possible for 
hardware to play a role in marking transaction boundaries or 
sequencing the transaction commits once they have been 
initiated. There are three situations where hardware assistance 
would be helpful.  
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Hardware could divide program execution into transactions 
automatically as the speculative buffers overflow. This could 
achieve the optimal transaction size by not letting transactions 
get so large that buffering becomes a problem, while keeping 
them large enough to minimize the impact of any commit 
overhead. The most common situation when this might be 
helpful is for code that divides “naturally” into very large 
transactions, but when these transactions can be freely 
subdivided into smaller transactions. This is a common 
situation in programs that have already been parallelized in a 
conventional manner. While it is fairly easy for a software 
programmer to insert extra commit points into the middle of 
these transactions in order to keep the speculative buffering 
requirements manageable, it would be simpler for hardware 
to automatically insert transaction commits whenever the 
speculative buffers are filled, thereby automatically breaking 
up the large transaction into transactions that are sized 
perfectly for the available speculative buffer sizes. The only 
limitation on this technique is that it no longer guarantees 
atomic execution semantics within the large transaction, as the 
hardware is free to insert an extra transaction commit point 
anywhere. This limitation can be overcome, however, by 
allowing programmers to explicitly mark the critical regions 
within the large transaction where hardware cannot insert 
commits. If the buffers overflow within these regions, then the 
processor acquires commit permission early and holds it until 
the end of the “atomic region,” when it finally inserts a 
commit.  
Instead of breaking large transactions into smaller ones, we 
might also want to have the hardware automatically merge 
small transactions together into larger ones. This would allow 
us to automatically gain some of the advantages of larger 
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transactions, but at the potential risk of having the hardware 
merge critical transactions that need to complete and 
propagate results quickly.  
 
Another useful way that hardware could interact with 
transactions is to occasionally insert “barriers” into long 
stretches of unordered transactions. This would simply consist 
of incrementing the phase number assigned to all new 
transactions, even if the software does not request a barrier 
explicitly. These occasional pseudobarriers would force all 
currently executing transactions to commit before allowing the 
system to progress further, effectively forcing all processors to 
make forward progress. Without this mechanism there is the 
possibility of starvation: a long transaction that makes no 
forward progress because it gets into an infinite loop of 
violations and restarts.  
 

4.3 Localization of Memory References  
One of the assumptions made so far is that all loads and stores 
must be speculatively buffered and broadcast throughout the 
system. However, it is often possible for programmers or 
compilers to give hints to the hardware that could reduce the 
need for buffering and, especially, for broadcast. For example, 
one way to reduce bandwidth is by marking some loads and 
stores as “local” ones that do not need to be broadcast. We 
applied this optimization to stack references in our analysis, 
because these references are guaranteed to be local within 
processors in most parallel systems, and do not need to be 
snooped by other processors. However, there are also other 
data structures that might be known as “local-only” to the 
programmer and/or compiler. These data structures could be 
marked either by locating them together in memory pages 
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marked by the OS as “local-only” or by accesses using special 
“load local” and “store local” opcodes. Either would allow the 
hardware to filter out these local references and, while still 
marking any changes for speculative rollback if necessary, 
avoid adding them to the list of data to be broadcast.  
 

4.4 I/O Handling  
A TCC system can handle I/O very easily. The key constraint 
is that a transaction cannot violate and rollback after input is 
obtained. When an attempt is made to read input, the current 
transaction immediately requests commit permission, just as if 
a buffer had overflowed. The input is only read after commit 
permission is obtained, when the transaction is guaranteed to 
never roll back. Outputs that require writes to occur in a 
specific order (like a network interface) can use a similar 
“pseudo-overflow” technique to force the writes to propagate 
out from the processor immediately, as stores are made. On 
the other hand, outputs that can accept potentially reordered 
writes (such as a frame buffer) may simply be updated at 
commit time, along with normal memory writes, thereby 
allowing higher performance. As a result, existing I/O 
handlers will work on TCC systems, although it will probably 
improve performance if transaction breakpoints are carefully 
placed within them. “Pseudo-overflows” to end transactions 
prematurely may also be helpful when events such as system 
calls and exceptions occur, but this is not necessarily required.  
 

5 SIMULATION METHODOLOGY  
 
As this paper is an initial evaluation to determine the overall 
potential of TCC, we chose to simulate a variety of parallel 
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integer and floating point benchmarks using a simplified 
hardware model that included many adjustable parameters to 
model a wide range of potential implementations of TCC 
systems. Our selection of applications and their associated 
datasets are summarized in Table 1. These applications come 
from a wide variety of different application domains: hand 
parallelized SPLASH-2 [38] programs, several floating point 
SPEC95 and 2000 [34] benchmarks parallelized semi-
automatically with help from either a compiler (for Fortran) or 
TLS (for C), the SPECjbb transaction processing benchmark 
[34], and a variety of Java programs parallelized using 
automated TLS techniques [8] while running on the Kaffe JVM 
[37]. We parallelized the SPECjbb benchmark within only one 
of its warehouses, a more difficult task than the usual 
technique of parallelizing between warehouses, in order to 
demonstrate how TCC can replace complex locking structures.  

 
Source Prog

ram Summary Dataset Parallelization 

SPEC200
0 FP [34] art image recognition 

/ neural nets Reference TLS loops + 
manual fixes 

 equa
ke 

seismic wave 
simulation Reference TLS loops + 

manual fixes 

 swi
m 

shallow water 
model 

256x256 grid, 
4 iterations compiler 

SPEC95 
FP [34] 

tomc
atv 

vectorized mesh 
generation 

256x256 grid, 
5 iterations compiler 

SPLASH2 
[35; 38] lu dense matrix 

factorization 
256x256, 

blocksize=16 all manual 

 radix radix sort 256K integers, 
radix 1024 all manual 

 wate
r-N2 

N-body molecular 
dynamics 125 molecules all manual 

SPECjbb2
000 [34] 

SPE
Cjbb 

transaction 
processing 

1 warehouse, 
230 iterations all manual 
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Source Prog
ram Summary Dataset Parallelization 

Java 
Grande 

[18] 
euler flow equations in 

irregular mesh 33x9 mesh automated, 
TLS-based 

 fft FFT kernel 1024 samples automated, 
TLS-based 

 mold
yn particle modeling 8x8x8x4 automated, 

TLS-based 

 raytr
ace 3D raytracer 150x150 image automated, 

TLS-based 
jBYTE 

mark [6] 
jbyte
_B5 

resource 
allocation 51x51 array automated, 

TLS-based 

 jbyte
_B6 data encryption — automated, 

TLS-based 

 jbyte
_B8 neural network 35x8x8 

network 
automated, 
TLS-based 

 jbyte
_B9 

dense matrix 
factorization 

101x101 
matrix 

automated, 
TLS-based 

SPECjvm
98 [34] mtrt raytracer 200x200 image automated, 

TLS-based 
Java Code 

[27] 
shall
ow 

shallow water 
model 256x256 grid automated, 

TLS-based 
 

Some applications analyzed for transactional behavior. 
 

Each of these benchmarks was run through a three-part 
investigative process. The first part consisted of examining 
existing benchmarks and inserting markers at the end of 
transactions and to replace conventional interprocessor 
synchronization. Afterwards, we ran the applications on an 
execution-driven simulator fixed to execute at one instruction 
per cycle, with perfect cache behavior (with real cache misses, 
this IPC will usually approximate the performance of an 
aggressive superscalar processor), and produce traces of all 
executed loads and stores (except stack references, which were 
guaranteed to be local to each processor) in the benchmarks. 
Once we had obtained traces of parallel execution from our 
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selection of benchmarks, we fed these traces into an analyzer 
that simulated the effects of running them in parallel on a very 
flexible transactional system. On this system, we were able to 
adjust parameters such as the number of processors, the 
commit bus bandwidth, speculative cache line bit 
configurations, and the overheads associated with various 
parts of the transactional protocol. The unusual characteristics 
of TCC allow such a simple simulation environment to still get 
reasonable performance estimates: the fixed ILP did not 
matter much because TCC is a thread level parallelism 
extraction mechanism, largely orthogonal to ILP extraction 
within the individual processor cores, and the fact that TCC 
only allows processor interaction at transaction commit made 
the precise timing of loads and stores within the transactions 
largely irrelevant. In fact, the most critical timing parameter 
that we obtained from simulation was the approximate cycle 
time of entire transactions. As a result, we were able to 
simulate a wide variety of potential system configurations 
with a reasonable amount of simulation time. While more 
detailed simulations will be necessary to investigate the full 
potential of TCC, this relatively simple study has allowed us 
to show what parts of the parallel computing design space are 
amenable to conversion to TCC, and to provide some 
estimates as to the buffering and bandwidth requirements that 
will be necessary for hardware support of TCC.  
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6 SIMULATION RESULTS 
 

6.1 Limits of Available Parallelism  
 
Our first results show the limits of parallelism available in our 
benchmarks that can be extracted with a TCC system. Fig. 4 
shows the speedups that can be obtained on these applications 
as the number of processors varies from 1 to 32 in an 
“optimal” TCC system.  

 
 

Figure 4: Speedups for varying numbers of processors  
with our manually parallelized benchmarks (a) and Java 
benchmarks with automated parallelism (b) on a perfect 

TCC system with 1 IPC processors, no memory delays, and ∞ 
commit bandwidth. 

 
This perfect system has infinite commit bus bandwidth 
between the processors. The speedups achieved with several 
benchmarks are close to the optimal linear case, and many 
others are competitive when compared with previously 
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published results obtained on conventional systems in papers 
such as [38]. As is illustrated in Fig. 5, there are several reasons 
why speedups are limited. Sequential code remaining in 
several of the applications limits speedup through Amdahl’s 
law (“idle” time). Load imbalance in parallel regions slows 
down water and fft (“waiting” time). Finally, while we were 
generally very successful at eliminating dependencies among 
transactions, some applications still suffer from occasional 
violations caused by true inter-transaction dependencies 
remaining in the programs. For example, in SPECjbb we 
eliminated all locks protecting various parts of the warehouse 
databases. As long as multiple transactions do not modify the 
same objects simultaneously, they may run in parallel, but 
since we have multiple processors running within the same 
warehouse, there is always a probability that simultaneous 
modifications may cause one of the transactions to violate.  

 
Figure 5: Distribution of execution time  

on the perfect TCC system’s processors between useful 
work, violated time (failed transactions), waiting time 
(load imbalance in parallel code), and idle time (time 

waiting during sequential code). 
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As a further example of this, we show results for equake 
parallelized into versions with both long (equake_l) and short 
(equake_ s) transactions. The longer transactions tended to 
incur more violations and experienced much less speedup. On 
benchmarks like this, the positioning and frequency of 
transaction commits can clearly be critical.  
We also parallelized several versions of radix to have different 
transaction sizes. However, radix has been manually tuned to 
eliminate dependencies and load imbalance between 
processors, so baseline speedups changed very little across the 
various versions.  
 

6.2 Buffering Requirements for Typical Transactions  
 

 
Figure 6: State read by individual transactions  

with store buffer granularity of 64-byte cache lines. We 
show state required by the smallest 10%, 50%, and 90% 

of iterations. 
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The most significant hardware cost of a TCC system is in the 
addition of the speculative buffer support to the local cache 
hierarchy. As a result, it is critical that the amount of state read 
and/or written by an average transaction be small enough to 
be buffered on-chip. To get an idea about the size of the state 
storage) required, Figs. 6 and 7 show the size of the buffers 
needed to hold the state read or written by 10%, 50%, and 90% 
of each application’s transactions, sorted by the size of the 90% 
limit.  
 
Virtually all applications have a few very large transactions 
that will definitely cause overflow, but hardware should have 
enough room to avoid overflow on most transactions in order 
to keep the number of early commit permission claims to a 
minimum. 90% or better is a good initial target, but even fewer 
overflows may be necessary for good performance on systems 
with many processors.  
 

 
Figure 7: Same as Fig. 6, but for write state. 
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State size is mostly dependent upon the sizes of “natural” 
transactional code regions, such as loop bodies, that are 
available for exploitation within an application. As such, it is 
very application dependent, but generally quite reasonable. 
With the exception of mtrt and SPECjbb, all of our 
benchmarks worked fine within about 6-12 KB of read state — 
well within the size of even the smallest caches today — and 
about 4-8 KB of write state.  
 
The buffer-hungry applications generally still had low 10% 
and 50% breakpoints, so even those would probably work 
reasonably well with small buffers, although noticeable 
serialization from buffer overflow would undoubtedly occur. 
While our various versions of radix did not vary much in 
terms of speedup, they varied dramatically in the size of their 
read and write state.Our radix_l and radix_xl (not plotted, 
because it was so large) variations required very large 
amounts of state with each transaction. However, it was 
relatively easy to scale these down to smaller transactions with 
little impact on the system performance. Based on our 
examination of the code, many dense-matrix applications such 
as swim and tomcatv should have similar properties. Any of 
these “transaction size tolerant” applications would also be 
excellent targets for use with hardware commit control, which 
could help the programmer size transaction regions optimally 
for the available buffer sizes. This would be especially helpful 
if widely varying datasets may be used, as transactions that 
entirely contain inner loops may vary in size along with the 
dataset.  
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6.3 Limited Bus Bandwidth  
 

 
Fig. 8 shows the average number of addresses 

 
For our “perfect” sample system, Fig. 8 shows the average 
number of addresses that must be broadcast on every cycle in 
order to commit all write state produced by all transactions in 
a system, when the state is stored as 64-byte cache lines. While 
bus activity in a TCC system is likely to be bursty, the average 
bandwidths are useful measures because of the ease with 
which TCC commit packets may be buffered. Because there 
are no delays in our system for cache misses or 
communication contention, these should be considered as an 
upper bound for instruction streams averaging 1 IPC. These 
numbers can be scaled up to indicate potential maximums for 
TCC systems composed of wide-issue superscalar cores, or 
down for simple processors.  
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Fig. 9. the amount of data being broadcast 

For all of our applications, the number of addresses per cycle 
is well below one, so a single snoop port on every processor 
node should be sufficient for designs of up to 32 processors, 
and can probably scale up to about 128 simple processors or a 
smaller number of wide-issue superscalar processors before 
additional snoop bandwidth would be required. These results 
also indicate that small TCC systems using an invalidate 
protocol would usually produce less than about 0.5 
bytes/cycle with 32-bit addresses. On the other hand, if an 
update protocol is used then the amount of data being 
broadcast may still be prodigious, as is shown in Fig. 9. On 
some of the applications (about a half of this sample), we may 
even be broadcasting more data than a processor executing a 
write through-based cache coherency mechanism, as 
illustrated in Fig. 10, with a high of nearly 18 bytes per cycle 
from the versions of radix with small transactions (and 
therefore more frequent commits) for 32 processor systems.  
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Fig. 10 write through-based mechanism 

While TCC allows writes to be combined together into 
buffered cache lines over the course of a transaction, the 
committing of extra “clean” sections of partially modified lines 
in the write state can push up the overall bandwidth 
requirements dramatically. This problem can be almost 
completely overcome by modifying the commit broadcast unit 
to only send out modified parts of committing cache lines, 
limiting bandwidth to just the black part of the bars in Fig. 9 
and limiting the amount of broadcast bandwidth required to 
about 7 bytes per cycle, even on the worst case applications 
like lu, swim, and tomcatv. For more typical applications, a 
range of 2–4 bytes per cycle would be sufficient. 
 

6.4 Other Limited Hardware  
 
While the previous runs with “perfect” hardware are helpful 
for determining if TCC is a viable idea, they do not show how 
a real TCC system will work in practice, where issues like 
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finite bus bandwidths, reduced numbers of read state bits, 
limited buffering, and time to handle the various protocol 
overheads can all be significant limiting factors on speedup. 
This section attempts to look at a few of these issues by 
varying some of the parameters with an 8-processor system.  

 
Fig. 11. full cache line committed per cycle 

 
We simulated finite bus bandwidths ranging from very high 
(68 bytes/cycle, a full cache line committed per cycle) to levels 
that would be reasonable in a high-performance CMP or even 
a potentially board-level system with a high-performance 
interconnect, and present the results in Fig. 11. Most 
applications were relatively insensitive to these levels of 
bandwidth limits, but a few that had a large write state and 
relatively short transactions, notably fft, experienced some 
degradation. Larger numbers of processors or an even more 
constrained interconnect are necessary for bandwidth to 
become a major limiting factor  for TCC systems.  
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In addition, we tried making the timing overhead required for 
commit permission arbitration non-zero, with times ranging 
from 5 cycles (necessary for arbitration across a large chip) to 
200 cycles (which may be necessary on a larger board-size 
system), and present these results in Fig. 12.  
 

 
Fig. 12. overhead required for commit arbitration 

 
SPECjbb, SPLASH applications, and compiler-parallelized 
SPEC FP applications, which have been designed for use on 
large systems, were almost totally insensitive to this factor. 
TLS-derived applications, on the other hand, were often quite 
sensitive, as their transactions tended to be much smaller. 
Similarly, the versions of equake and radix that had the 
smallest transaction sizes showed much more degradation 
from this overhead than the versions with longer transactions.  
 
We found that optional state proved to be less useful with our 
selection of applications and hardware parameters. Extra read 
state bits (on a per-word instead of per-line basis) usually 
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made no difference, but were essential with a few 
applications. Most of our manually parallelized applications 
were carefully tuned to avoid the “false violations,” as they 
were already blocked to avoid false cache sharing, but some of 
the TLS-parallelized applications, whose data structures had 
not been modified for parallelism, were dependent upon 
hardware to avoid extraneous violations. Memory renaming 
bits were only critical for two of the Java TLS applications, 
jbyte_B5 and mtrt, as they re-used some “scratchpad” data 
structures in each transaction. Our analysis also showed little 
gain from double buffering, surprisingly enough. When we 
turned it off, not much happened. However, these tests were 
performed with relatively plentiful system bandwidth. Since 
double-buffering is primarily a technique to avoid waiting for 
a busy broadcast medium, it should still prove to be useful in 
more bandwidth-limited environments.  
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7 CONCLUSIONS  
 
We have analyzed a variety of implementations of TCC 
systems, including an optimal one, and determined that TCC 
can be used to obtain good performance over a wide variety of 
existing parallel application domains, while providing a 
programming model that significantly simplifies the task of 
writing parallel programs. Our analysis of TCC with a wide 
range of applications shows that each processor node requires 
6–12 KB of read buffering space in its caches and 4–8 KB of 
write buffering to achieve high-performance execution on 
most applications. This buffer memory adds little overhead to 
the existing cache hierarchy already present within the node. 
The main limitation of TCC is that it requires high broadcast 
bandwidth among the processor nodes to maintain all 
processor’s memory in a coherent state. For an 8 processor 
system, the interprocessor interconnect bandwidth must be 
large enough to sustain about 2–4 bytes per cycle per average 
processor IPC to support an update protocol, or usually less 
then 0.5 bytes per cycle for an invalidate protocol. These rates 
are easy to sustain within a CMP, and perhaps even a single-
board multiprocessor. On these types of systems, we believe 
that TCC could be a high-performance but much simpler 
alternative to traditional cache coherence and consistency.  
This initial investigation of TCC suggests many potential 
directions for future work. The most critical is an evaluation of 
TCC with realistic hardware models for a CMP and/or a 
board-level system. A detailed evaluation of the TCC 
programming environment is also a priority, since one of the 
main advantages of TCC is its simplified parallel 
programming model. Further out, we see TCC being extended 
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to be more scalable by imposing levels of hierarchy on the 
commit arbitration and snoop mechanisms and possibly by 
allowing some overlap between commits. More functionality 
may also be added, such as the hardware commit 
mechanisms, extensions to the data localization, or system 
reliability mechanisms that use TCC’s continuous speculative 
transactions to roll back the current transaction after transient 
faults.  
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