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1. Network science 
Network science is a new and emerging scientific discipline that examines the interconnections among diverse 
physical or engineered networks, information networks, biological networks, cognitive and semantic networks, 
and social networks. This field of science seeks to discover common principles, algorithms and tools that govern 
network behavior. The National Research Council defines Network Science as "the study of network 
representations of physical, biological, and social phenomena leading to predictive models of these phenomena." 

The study of networks has emerged in diverse disciplines as a means of analyzing complex relational data. The 
earliest known paper in this field is the famous Seven Bridges of Königsberg written by Leonhard Euler in 1736. 
Euler's mathematical description of vertices and edges was the foundation of graph theory, a branch of 
mathematics that studies the properties of pairwise relations in a network structure. The field of graph theory 
continued to develop and found applications in chemistry (Sylvester, 1878). 

In the 1930s Jacob Moreno, a psychologist in the Gestalt tradition, arrived in the United States. He developed the 
sociogram and presented it to the public in April 1933 at a convention of medical scholars. Moreno claimed that 
"before the advent of sociometry no one knew what the interpersonal structure of a group 'precisely' looked like 
(Moreno, 1953). The sociogram was a representation of the social structure of a group of elementary school 
students. The boys were friends of boys and the girls were friends of girls with the exception of one boy who said 
he liked a single girl. The feeling was not reciprocated. This network representation of social structure was found 
so intriguing that it was printed in the The New York Times(April 3, 1933, page 17). The sociogram has found many 
applications and has grown into the field of social network analysis. 
Probabilistic theory in network science developed as an off-shoot of graph theory with Paul Erdős and Alfréd 
Rényi's eight famous papers on random graphs. For social networks the exponential random graph model or p* 
graph is a notational framework used to represent the probability space of a tie occurring in a social network. An 
alternate approach to network probability structures is the network probability matrix, which models the 
probability of edges occurring in a network, based on the historic presence or absence of the edge in a sample of 
networks. 

In the 1998, David Krackhardt and Kathleen Carley introduced the idea of a meta-network with the PCANS Model. 
They suggest that "all organizations are structured along these three domains, Individuals, Tasks, and Resources. 
Their paper introduced the concept that networks occur across multiple domains and that they are interrelated. 
This field has grown into another sub-discipline of network science called dynamic network analysis. 

More recently other network science efforts have focused on mathematically describing different network 
topologies. Duncan Watts reconciled empirical data on networks with mathematical representation, describing 
the small-world network. Albert-László Barabási and Reka Albert developed the scale-free network which is a 
loosely defined network topology that contains hub vertices with many connections, that grow in a way to 
maintain a constant ratio in the number of the connections versus all other nodes. Although many networks, such 
as the internet, appear to maintain this aspect, other networks have long tailed distributions of nodes that only 
approximate scale free ratios. 
Today, network science is an exciting and growing field. Scientists from many diverse fields are working together. 
Network science holds the promise of increasing collaboration across disciplines, by sharing data, algorithms, and 
software tools. 
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2. Network theory 
Network theory is an area of computer science and network science and part of graph theory. It has application in 
many disciplines including particle physics, computer science, biology, economics, operations research, and 
sociology. Network theory concerns itself with the study of graphs as a representation of either symmetric 
relations or, more generally, of asymmetric relations between discrete objects. Applications of network theory 
include logistical networks, the World Wide Web, gene regulatory networks, metabolic networks, social networks, 
epistemological networks, etc. See list of network theory topics for more examples. 

Network optimization 
Network problems that involve finding an optimal way of doing something are studied under the name of 
combinatorial optimization. Examples include network flow, shortest path problem, transport problem, 
transshipment problem, location problem, matching problem, assignment problem, packing problem, routing 
problem, Critical Path Analysis and PERT (Program Evaluation & Review Technique). 

Network analysis 

Social network analysis 
Social network analysis maps relationships between individuals in social networks.[1] Such individuals are often 
persons, but may be groups (including cliques and cohesive blocks), organizations, nation states, web sites, or 
citations between scholarly publications (scientometrics). 

Network analysis, and its close cousin traffic analysis, has significant use in intelligence. By monitoring the 
communication patterns between the network nodes, its structure can be established. This can be used for 
uncovering insurgent networks of both hierarchical and leaderless nature. 

Biological network analysis 
With the recent explosion of publicly available high throughput biological data, the analysis of molecular networks 
has gained significant interest. The type of analysis in this content are closely related to social network analysis, 
but often focusing on local patterns in the network. For example network motifs are small subgraphs that are 
over-represented in the network. Activity motifs are similar over-represented patterns in the attributes of nodes 
and edges in the network that are over represented given the network structure. 

Link analysis 
Link analysis is a subset of network analysis, exploring associations between objects. An example may be 
examining the addresses of suspects and victims, the telephone numbers they have dialed and financial 
transactions that they have partaken in during a given timeframe, and the familial relationships between these 
subjects as a part of police investigation. Link analysis here provides the crucial relationships and associations 
between very many objects of different types that are not apparent from isolated pieces of information. 
Computer-assisted or fully automatic computer-based link analysis is increasingly employed by banks and 
insurance agencies in fraud detection, by telecommunication operators in telecommunication network analysis, by 
medical sector in epidemiology and pharmacology, in law enforcement investigations, by search engines for 
relevance rating (and conversely by the spammers for spamdexing and by business owners for search engine 
optimization), and everywhere else where relationships between many objects have to be analyzed. 

Web link analysis 
Several Web search ranking algorithms use link-based centrality metrics, including (in order of appearance) 
Marchiori's Hyper Search, Google's PageRank, Kleinberg's HITS algorithm, and the TrustRank algorithm. Link 
analysis is also conducted in information science and communication science in order to understand and extract 
information from the structure of collections of web pages. For example the analysis might be of the interlinking 
between politicians' web sites or blogs. 

Centrality measures 
Information about the relative importance of nodes and edges in a graph can be obtained through centrality 
measures, widely used in disciplines like sociology. For example, eigenvector centrality uses the eigenvectors of 
the adjacency matrix to determine nodes that tend to be frequently visited. 
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Spread of content in networks 
Content in a complex network can spread via two major methods: conserved spread and non-conserved spread.[2] 
In conserved spread, the total amount of content that enters a complex network remains constant as it passes 
through. The model of conserved spread can best be represented by a pitcher containing a fixed amount of water 
being poured into a series of funnels connected by tubes . Here, the pitcher represents the original source and the 
water is the content being spread. The funnels and connecting tubing represent the nodes and the connections 
between nodes, respectively. As the water passes from one funnel into another, the water disappears instantly 
from the funnel that was previously exposed to the water. In non-conserved spread, the amount of content 
changes as it enters and passes through a complex network. The model of non-conserved spread can best be 
represented by a continuously running faucet running through a series of funnels connected by tubes . Here, the 
amount of water from the original source is infinite. Also, any funnels that have been exposed to the water 
continue to experience the water even as it passes into successive funnels. The non-conserved model is the most 
suitable for explaining the transmission of most infectious diseases. 

See also 
 Complex network  
 Network science  
 Network topology  
 Small-world networks  

 Social circles  
 Scale-free networks  
 Sequential dynamical systems  

Implementations 
 Orange, a free data mining software suite, module orngNetwork  
 Pajek, program for (large) network analysis and visualization  

Notes 
1. ^ Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applications. 

Cambridge: Cambridge University Press.  
2. ^ Newman, M., Barabási, A.-L., Watts, D.J. [eds.] (2006) The Structure and Dynamics of Networks. Princeton, 

N.J.: Princeton University Press.  

External links 
 New Network Theory International Conference on 'New Network Theory'  
 Network Workbench: A Large-Scale Network Analysis, Modeling and Visualization Toolkit  
 Network analysis of computer networks  
 Network analysis of organizational networks  
 Network analysis of terrorist networks  
 Network analysis of a disease outbreak  
 Link Analysis: An Information Science Approach (book)  
 Connected: The Power of Six Degrees (documentary)  
 
 

 

3. Graph theory 
 A drawing of a graph 

In mathematics and computer science, graph theory is the study of graphs: 
mathematical structures used to model pairwise relations between objects 
from a certain collection. A "graph" in this context refers to a collection of 
vertices or 'nodes' and a collection of edges that connect pairs of vertices. A 
graph may be undirected, meaning that there is no distinction between the 
two vertices associated with each edge, or its edges may be directed from 
one vertex to another; see graph (mathematics) for more detailed 
definitions and for other variations in the types of graphs that are commonly 

considered. The graphs studied in graph theory should not be confused with "graphs of functions" and other 
kinds of graphs. 
Refer to Glossary of graph theory for basic definitions in graph theory. 
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History 
 The Königsberg Bridge problem 

The paper written by Leonhard Euler on the Seven Bridges of 
Königsberg and published in 1736 is regarded as the first paper in the 
history of graph theory.[1] This paper, as well as the one written by 
Vandermonde on the knight problem, carried on with the analysis 
situs initiated by Leibniz. Euler's formula relating the number of 
edges, vertices, and faces of a convex polyhedron was studied and 
generalized by Cauchy[2] and L'Huillier,[3] and is at the origin of 
topology. 
More than one century after Euler's paper on the bridges of 
Königsberg and while Listing introduced topology, Cayley was led by 
the study of particular analytical forms arising from differential 

calculus to study a particular class of graphs, the trees. This study had many implications in theoretical chemistry. 
The involved techniques mainly concerned the enumeration of graphs having particular properties. Enumerative 
graph theory then rose from the results of Cayley and the fundamental results published by Pólya between 1935 
and 1937 and the generalization of these by De Bruijn in 1959. Cayley linked his results on trees with the 
contemporary studies of chemical composition.[4] The fusion of the ideas coming from mathematics with those 
coming from chemistry is at the origin of a part of the standard terminology of graph theory. 

In particular, the term "graph" was introduced by Sylvester in a paper published in 1878 in Nature, where he draws 
an analogy between "quantic invariants" and "co-variants" of algebra and molecular diagrams:[5] 

"[...] Every invariant and co-variant thus becomes expressible by a graph precisely identical with a Kekuléan 
diagram or chemicograph. [...] I give a rule for the geometrical multiplication of graphs, i.e. for constructing a 
graph to the product of in- or co-variants whose separate graphs are given. [...]" (italics as in the original).  
One of the most famous and productive problems of graph theory is the four color problem: "Is it true that any 
map drawn in the plane may have its regions colored with four colors, in such a way that any two regions having a 
common border have different colors?" This problem was first posed by Francis Guthrie in 1852 and its first written 
record is in a letter of De Morgan addressed to Hamilton the same year. Many incorrect proofs have been 
proposed, including those by Cayley, Kempe, and others. The study and the generalization of this problem by Tait, 
Heawood, Ramsey and Hadwiger led to the study of the colorings of the graphs embedded on surfaces with 
arbitrary genus. Tait's reformulation generated a new class of problems, the factorization problems, particularly 
studied by Petersen and Kőnig. The works of Ramsey on colorations and more specially the results obtained by 
Turán in 1941 was at the origin of another branch of graph theory, extremal graph theory. 
The four color problem remained unsolved for more than a century. A proof produced in 1976 by Kenneth Appel 
and Wolfgang Haken,[6][7] which involved checking the properties of 1,936 configurations by computer, was not 
fully accepted at the time due to its complexity. A simpler proof considering only 633 configurations was given 
twenty years later by Robertson, Seymour, Sanders and Thomas.[8] 
The autonomous development of topology from 1860 and 1930 fertilized graph theory back through the works of 
Jordan, Kuratowski and Whitney. Another important factor of common development of graph theory and 
topology came from the use of the techniques of modern algebra. The first example of such a use comes from the 
work of the physicist Gustav Kirchhoff, who published in 1845 his Kirchhoff's circuit laws for calculating the 
voltage and current in electric circuits. 
The introduction of probabilistic methods in graph theory, especially in the study of Erdős and Rényi of the 
asymptotic probability of graph connectivity, gave rise to yet another branch, known as random graph theory, 
which has been a fruitful source of graph-theoretic results. 

Vertex (graph theory) 
 A graph with 6 vertices and 7 edges 

In graph theory, a vertex (plural vertices) or node is the fundamental unit out of 
which graphs are formed: an undirected graph consists of a set of vertices and a 
set of edges (unordered pairs of vertices), while a directed graph consists of a 
set of vertices and a set of arcs (ordered pairs of vertices). From the point of 
view of graph theory, vertices are treated as featureless and indivisible objects, 
although they may have additional structure depending on the application from 
which the graph arises; for instance, a semantic network is a graph in which the 

vertices represent concepts or classes of objects. 
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The two vertices forming an edge are said to be its endpoints, and the edge is said to be incident to the vertices. A 
vertex w is said to be adjacent to another vertex v if the graph contains an edge (v,w). The neighborhood of a 
vertex v is an induced subgraph of the graph, formed by all vertices adjacent to v. 
The degree of a vertex in a graph is the number of edges incident to it. An isolated vertex is a vertex with degree 
zero; that is, a vertex that is not an endpoint of any edge. A leaf vertex (also pendant vertex) is a vertex with 
degree one. In a directed graph, one can distinguish the outdegree (number of outgoing edges) from the indegree 
(number of incoming edges); a source vertex is a vertex with indegree zero, while a sink vertex is a vertex with 
outdegree zero. 
A cut vertex is a vertex the removal of which would disconnect the remaining graph; a vertex separator is a 
collection of vertices the removal of which would disconnect the remaining graph into small pieces. A k-vertex-
connected graph is a graph in which removing fewer than k vertices always leaves the remaining graph connected. 
An independent set is a set of vertices no two of which are adjacent, and a vertex cover is a set of vertices that 
includes the endpoint of each edge in the graph. The vertex space of a graph is a vector space having a set of basis 
vectors corresponding with the graph's vertices. 

A graph is vertex-transitive if it has symmetries that map any vertex to any other vertex. In the context of graph 
enumeration and graph isomorphism it is important to distinguish between labeled vertices and unlabeled 
vertices. A labeled vertex is a vertex that is associated with extra information that enables it to be distinguished 
from other labeled vertices; two graphs can be considered isomorphic only if the correspondence between their 
vertices pairs up vertices with equal labels. An unlabeled vertex is one that can be substituted for any other vertex 
based only on its adjacencies in the graph and not based on any additional information. 
Vertices in graphs are analogous to, but not the same as, vertices of polyhedra: the skeleton of a polyhedron 
forms a graph, the vertices of which are the vertices of the polyhedron, but polyhedron vertices have additional 
structure (their geometric location) that is not assumed to be present in graph theory. The vertex figure of a 
vertex in a polyhedron is analogous to the neighborhood of a vertex in a graph. 
In a directed graph, the forward star of a node u is defined as its outgoing edges. In a Graph G with the set of 

vertices V and the set of edges E, the forward star of u can be described as . 

Drawing graphs 
Graphs are represented graphically by drawing a dot for every vertex, and drawing an arc between two vertices if 
they are connected by an edge. If the graph is directed, the direction is indicated by drawing an arrow. 

A graph drawing should not be confused with the graph itself (the abstract, non-visual structure) as there are 
several ways to structure the graph drawing. All that matters is which vertices are connected to which others by 
how many edges and not the exact layout. In practice it is often difficult to decide if two drawings represent the 
same graph. Depending on the problem domain some layouts may be better suited and easier to understand than 
others. 

Graph-theoretic data structures 
There are different ways to store graphs in a computer system. The data structure used depends on both the 
graph structure and the algorithm used for manipulating the graph. Theoretically one can distinguish between list 
and matrix structures but in concrete applications the best structure is often a combination of both. List 
structures are often preferred for sparse graphs as they have smaller memory requirements. Matrix structures on 
the other hand provide faster access for some applications but can consume huge amounts of memory. 

List structures 
Incidence list   

The edges are represented by an array containing pairs (tuples if directed) of vertices (that the edge connects) 
and possibly weight and other data. Vertices connected by an edge are said to be adjacent.  
Adjacency list   
Much like the incidence list, each vertex has a list of which vertices it is adjacent to. This causes redundancy in an 
undirected graph: for example, if vertices A and B are adjacent, A's adjacency list contains B, while B's list contains 
A. Adjacency queries are faster, at the cost of extra storage space.  

Matrix structures 
Incidence matrix   
The graph is represented by a matrix of size |V| (number of vertices) by |E| (number of edges) where the entry 
[vertex, edge] contains the edge's endpoint data (simplest case: 1 - connected, 0 - not connected).  
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Adjacency matrix   
This is the n by n matrix A, where n is the number of vertices in the graph. If there is an edge from some vertex x to 
some vertex y, then the element ax,y is 1 (or in general the number of xy edges), otherwise it is 0. In computing, 
this matrix makes it easy to find subgraphs, and to reverse a directed graph.  
Laplacian matrix or Kirchhoff matrix or Admittance matrix   

This is defined as D − A, where D is the diagonal degree matrix. It explicitly contains both adjacency information 
and degree information.  
Distance matrix   
A symmetric n by n matrix D whose element dx,y is the length of a shortest path between x and y; if there is no such 
path dx,y = infinity. It can be derived from powers of A  

 

Problems in graph theory 

Enumeration 

There is a large literature on graphical enumeration: the problem of counting graphs meeting specified conditions. 
Some of this work is found in Harary and Palmer (1973). 

Subgraphs, induced subgraphs, and minors 
A common problem, called the subgraph isomorphism problem, is finding a fixed graph as a subgraph in a given 
graph. One reason to be interested in such a question is that many graph properties are hereditary for subgraphs, 
which means that a graph has the property if and only if all subgraphs have it too. Unfortunately, finding maximal 
subgraphs of a certain kind is often an NP-complete problem. 

 Finding the largest complete graph is called the clique problem (NP-complete).  

A similar problem is finding induced subgraphs in a given graph. Again, some important graph properties are 
hereditary with respect to induced subgraphs, which means that a graph has a property if and only if all induced 
subgraphs also have it. Finding maximal induced subgraphs of a certain kind is also often NP-complete. For 
example, 

 Finding the largest edgeless induced subgraph, or independent set, called the independent set problem (NP-
complete).  

Still another such problem, the minor containment problem, is to find a fixed graph as a minor of a given graph. A 
minor or subcontraction of a graph is any graph obtained by taking a subgraph and contracting some (or no) 
edges. Many graph properties are hereditary for minors, which means that a graph has a property if and only if all 
minors have it too. A famous example: 

 A graph is planar if it contains as a minor neither the complete bipartite graph K3,3 (See the Three-cottage 
problem) nor the complete graph K5.  

Another class of problems has to do with the extent to which various species and generalizations of graphs are 
determined by their point-deleted subgraphs, for example: 

 The reconstruction conjecture  

Graph coloring 
 The four-color theorem  
 The strong perfect graph theorem  
 The Erdős–Faber–Lovász conjecture (unsolved)  
 The total coloring conjecture (unsolved)  

 The list coloring conjecture (unsolved)  
 The Hadwiger conjecture (graph theory) 

(unsolved)  

Route problems 

 Hamiltonian path and cycle problems  
 Minimum spanning tree  
 Route inspection problem (also called the 

"Chinese Postman Problem")  
 Seven Bridges of Königsberg  

 Shortest path problem  
 Steiner tree  
 Three-cottage problem  
 Traveling salesman problem (NP-complete)  

Network flow 

There are numerous problems arising especially from applications that have to do with various notions of flows in 
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networks, for example: Max flow min cut theorem  

Visibility graph problems 
 Museum guard problem  

Covering problems 
Covering problems are specific instances of subgraph-finding problems, and they tend to be closely related to the 
clique problem or the independent set problem. 

 Set cover problem   Vertex cover problem  

Graph classes 

Many problems involve characterizing the members of various classes of graphs. Overlapping significantly with 
other types in this list, this type of problem includes, for instance: 

 Enumerating the members of a class  
 Characterizing a class in terms of forbidden substructres  
 Ascertaining relationships among classes (e.g., does one property of graphs imply another)  
 Finding efficient algorithms to decide membership in a class  
 Finding representations for members of a class  

Applications 
Applications of graph theory are primarily, but not exclusively, concerned with labeled graphs and various 
specializations of these. 
Structures that can be represented as graphs are ubiquitous, and many problems of practical interest can be 
represented by graphs. The link structure of a website could be represented by a directed graph: the vertices are 
the web pages available at the website and a directed edge from page A to page B exists if and only if A contains a 
link to B. A similar approach can be taken to problems in travel, biology, computer chip design, and many other 
fields. The development of algorithms to handle graphs is therefore of major interest in computer science. There, 
the transformation of graphs is often formalized and represented by graph rewrite systems. They are either 
directly used or properties of the rewrite systems(e.g. confluence) are studied. 

A graph structure can be extended by assigning a weight to each edge of the graph. Graphs with weights, or 
weighted graphs, are used to represent structures in which pairwise connections have some numerical values. For 
example if a graph represents a road network, the weights could represent the length of each road. A digraph 
with weighted edges in the context of graph theory is called a network. 

Networks have many uses in the practical side of graph theory, network analysis (for example, to model and 
analyze traffic networks). Within network analysis, the definition of the term "network" varies, and may often 
refer to a simple graph. 

Many applications of graph theory exist in the form of network analysis. These split broadly into three categories: 
1. First, analysis to determine structural properties of a network, such as the distribution of vertex degrees and 

the diameter of the graph. A vast number of graph measures exist, and the production of useful ones for 
various domains remains an active area of research.  

2. Second, analysis to find a measurable quantity within the network, for example, for a transportation network, 
the level of vehicular flow within any portion of it.  

3. Third, analysis of dynamical properties of networks.  
Graph theory is also used to study molecules in chemistry and physics. In condensed matter physics, the three 
dimensional structure of complicated simulated atomic structures can be studied quantitatively by gathering 
statistics on graph-theoretic properties related to the topology of the atoms. For example, Franzblau's shortest-
path (SP) rings. In chemistry a graph makes a natural model for a molecule, where vertices represent atoms and 
edges bonds. This approach is especially used in computer processing of molecular structures, ranging from 
chemical editors to database searching. 

Graph theory is also widely used in sociology as a way, for example, to measure actors' prestige or to explore 
diffusion mechanisms, notably through the use of social network analysis software. 

Likewise, graph theory is useful in biology and conservation efforts where a vertex can represent regions where 
certain species exist (or habitats) and the edges represent migration paths, or movement between the regions. 
This information is important when looking at breeding patterns or tracking the spread of disease, parasites or 
how changes to the movement can affect other species. 
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See also 
 Gallery of named graphs  
 Glossary of graph theory  

 List of graph theory topics  
 Publications in graph theory  

Related topics 

 Graph property  
 Algebraic graph theory  
 Conceptual graph  
 Data structure  
 Disjoint-set data structure  
 Entitative graph  
 Existential graph  
 Graph data structure  
 Graph algebras  
 Graph automorphism  
 Graph coloring  
 Graph database  
 Graph drawing  

 Graph equation  
 Graph rewriting  
 Intersection graph  
 Logical graph  
 Loop  
 Null graph  
 Perfect graph  
 Quantum graph  
 Spectral graph theory  
 Strongly regular graphs  
 Symmetric graphs  
 Tree data structure  

Algorithms 

 Bellman-Ford algorithm  
 Dijkstra's algorithm  
 Ford-Fulkerson algorithm  
 Kruskal's algorithm  

 Nearest neighbour algorithm  
 Prim's algorithm  
 Depth-first search  
 Breadth-first search  

Subareas 

 Algebraic graph theory  
 Geometric graph theory  
 Extremal graph theory  

 Probabilistic graph theory  
 Topological graph theory  

Related areas of mathematics 

 Combinatorics  
 Group theory  

 Knot theory  
 Ramsey theory  

Generalizations 

 Hypergraph   Abstract simplicial complex  

Prominent graph theorists 

 Berge, Claude  
 Bollobás, Béla  
 Chung, Fan  
 Dirac, Gabriel Andrew  
 Erdős, Paul  
 Euler, Leonhard  
 Faudree, Ralph  
 Golumbic, Martin  
 Graham, Ronald  
 Harary, Frank  
 Heawood, Percy John  
 Kőnig, Dénes  

 Lovász, László  
 Nešetřil, Jaroslav  
 Rényi, Alfréd  
 Ringel, Gerhard  
 Robertson, Neil  
 Seymour, Paul  
 Szemerédi, Endre  
 Thomas, Robin  
 Thomassen, Carsten  
 Turán, Pál  
 Tutte, W. T.  

Notes 

1. ^ Biggs, N.; Lloyd, E. and Wilson, R. (1986). Graph Theory, 1736-1936. Oxford University Press.  
2. ^ Cauchy, A.L. (1813). "Recherche sur les polyèdres - premier mémoire". Journal de l'Ecole Polytechnique 9 

(Cahier 16): 66–86.  
3. ^ L'Huillier, S.-A.-J. (1861). "Mémoire sur la polyèdrométrie". Annales de Mathématiques 3: 169–189.  
4. ^ Cayley, A. (1875). "Ueber die Analytischen Figuren, welche in der Mathematik Bäume genannt werden und 
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ihre Anwendung auf die Theorie chemischer Verbindungen". Berichte der deutschen Chemischen Gesellschaft 8: 
1056–1059. doi:10.1002/cber.18750080252.  

5. ^ John Joseph Sylvester (1878), Chemistry and Algebra. Nature, volume 17, page 284. doi:10.1038/017284a0. 
Online version accessed on 2009-12-30.  

6. ^ Appel, K. and Haken, W. (1977). "Every planar map is four colorable. Part I. Discharging". Illinois J. Math. 21: 
429–490.  

7. ^ Appel, K. and Haken, W. (1977). "Every planar map is four colorable. Part II. Reducibility". Illinois J. Math. 21: 
491–567.  

8. ^ Robertson, N.; Sanders, D.; Seymour, P. and Thomas, R. (1997). "The four color theorem". Journal of 
Combinatorial Theory Series B 70: 2–44. doi:10.1006/jctb.1997.1750.  
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 Harary, Frank; Palmer, Edgar M. (1973), Graphical Enumeration, New York, NY: Academic Press.  
 Mahadev, N.V.R.; Peled, Uri N. (1995), Threshold Graphs and Related Topics, North-Holland.  
 Gallo, Giorgio; Pallotino, Stefano (December 1988). "Shortest Path Algorithms" (PDF). Annals of Operations 

Research (Netherlands: Springer) 13 (1): 1–79. doi:10.1007/BF02288320. 
http://www.springerlink.com/content/awn535w405321948/. Retrieved 2008-06-18.  

 Chartrand, Gary (1985). Introductory graph theory. New York: Dover. ISBN 0-486-24775-9.  
 Biggs, Norman; Lloyd, E. H.; Wilson, Robin J. (1986). Graph theory, 1736-1936. Oxford [Oxfordshire]: Clarendon 

Press. ISBN 0-19-853916-9.  
 Harary, Frank (1969). Graph theory. Reading, Mass.: Addison-Wesley Publishing. ISBN 0-201-41033-8.  
 Harary, Frank; Palmer, Edgar M. (1973). Graphical enumeration. New York, Academic Press. ISBN 0-12-324245-2.  

Online textbooks 
 Graph Theory with Applications (1976) by Bondy and Murty  
 Phase Transitions in Combinatorial Optimization Problems, Section 3: Introduction to Graphs (2006) by 

Hartmann and Weigt  
 Digraphs: Theory Algorithms and Applications 2007 by J. Bang-Jensen and G. Gutin  
 Graph Theory, by Reinhard Diestel  

 Weisstein, Eric W., "Graph Vertex" from MathWorld.  

Other resources 
 Image gallery: graphs  
 Concise, annotated list of graph theory resources for researchers  
 

 

4. Complex network 
In the context of network theory, a complex network is a network (graph) with non-trivial topological features—
features that do not occur in simple networks such as lattices or random graphs. The study of complex networks is 
a young and active area of scientific research inspired largely by the empirical study of real-world networks such as 
computer networks and social networks. 

Definition 
Most social, biological, and technological networks display substantial non-trivial topological features, with 
patterns of connection between their elements that are neither purely regular nor purely random. Such features 
include a heavy tail in the degree distribution, a high clustering coefficient, assortativity or disassortativity among 
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vertices, community structure, and hierarchical structure. In the case of directed networks these features also 
include reciprocity, triad significance profile and other features. In contrast, many of the mathematical models of 
networks that have been studied in the past, such as lattices and random graphs, do not show these features. 
Two well-known and much studied classes of complex networks are scale-free networks and small-world 
networks, whose discovery and definition are canonical case-studies in the field. Both are characterized by specific 
structural features—power-law degree distributions for the former and short path lengths and high clustering for 
the latter. However, as the study of complex networks has continued to grow in importance and popularity, many 
other aspects of network structure have attracted attention as well. 
The field continues to develop at a brisk pace, and has brought together researchers from many areas including 
mathematics, physics, biology, computer science, sociology, epidemiology, and others. Ideas from network 
science have been applied to the analysis of metabolic and genetic regulatory networks, the design of robust and 
scalable communication networks both wired and wireless, the development of vaccination strategies for the 
control of disease, and a broad range of other practical issues. Research on networks has seen regular publication 
in some of the most visible scientific journals and vigorous funding in many countries, has been the topic of 
conferences in a variety of different fields, and has been the subject of numerous books both for the lay person 
and for the expert. 

Scale-free networks 
A network is named scale-free if its degree distribution, i.e., the probability that a node selected uniformly at 
random has a certain number of links (degree), follows a particular mathematical function called a power law. The 
power law implies that the degree distribution of these networks has no characteristic scale. In contrast, network 
with a single well-defined scale are somewhat similar to a lattice in that every node has (roughly) the same degree. 
Examples of networks with a single scale include the Erdős–Rényi random graph and hypercubes. In a network 
with a scale-free degree distribution, some vertices have a degree that is orders of magnitude larger than the 
average - these vertices are often called "hubs", although this is a bit misleading as there is no inherent threshold 
above which a node can be viewed as a hub. If there were, then it wouldn't be a scale-free distribution! 

Interest in scale-free networks began in the late 1990s with the apparent discovery of a power-law degree 
distribution in many real world networks such as the World Wide Web, the network of Autonomous systems 
(ASs), some network of Internet routers, protein interaction networks, email networks, etc. Although many of 
these distributions are not unambiguously power laws, their breadth, both in degree and in domain, shows that 
networks exhibiting such a distribution are clearly very different from what you would expect if edges existed 
independently and at random (a Poisson distribution). Indeed, there are many different ways to build a network 
with a power-law degree distribution. The Yule process is a canonical generative process for power laws, and has 
been known since 1925. However, it is known by many other names due to its frequent reinvention, e.g., The 
Gibrat principle by Herbert Simon, the Matthew effect, cumulative advantage and, most recently, preferential 
attachment by Barabási and Albert for power-law degree distributions. 
Networks with a power-law degree distribution can be highly resistant to the random deletion of vertices, i.e., the 
vast majority of vertices remain connected together in a giant component. Such networks can also be quite 
sensitive to targeted attacks aimed at fracturing the network quickly. When the graph is uniformly random except 
for the degree distribution, these critical vertices are the ones with the highest degree, and have thus been 
implicated in the spread of disease (natural and artificial) in social and communication networks, and in the spread 
of fads (both of which are modeled by a percolation or branching process). 

Small-world networks 
A network is called a small-world network by analogy with the small-world phenomenon (popularly known as six 
degrees of separation). The small world hypothesis, which was first described by the Hungarian writer Frigyes 
Karinthy in 1929, and tested experimentally by Stanley Milgram (1967), is the idea that two arbitrary people are 
connected by only six degrees of separation, i.e. the diameter of the corresponding graph of social connections is 
not much larger than six. In 1998, Duncan J. Watts and Steven Strogatz published the first small-world network 
model, which through a single parameter smoothly interpolates between a random graph to a lattice. Their model 
demonstrated that with the addition of only a small number of long-range links, a regular graph, in which the 
diameter is proportional to the size of the network, can be transformed into a "small world" in which the average 
number of edges between any two vertices is very small (mathematically, it should grow as the logarithm of the 
size of the network), while the clustering coefficient stays large. It is known that a wide variety of abstract graphs 
exhibit the small-world property, e.g., random graphs and scale-free networks. Further, real world networks such 
as the World Wide Web and the metabolic network also exhibit this property. 
In the scientific literature on networks, there is some ambiguity associated with the term "small world." In 
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addition to referring to the size of the diameter of the network, it can also refer to the co-occurrence of a small 
diameter and a high clustering coefficient. The clustering coefficient is a metric that represents the density of 
triangles in the network. For instance, sparse random graphs have a vanishingly small clustering coefficient while 
real world networks often have a coefficient significantly larger. Scientists point to this difference as suggesting 
that edges are correlated in real world networks. 

Researchers and scientists 
 Réka Albert  
 Luis Amaral  
 Alex Arenas  
 Albert-László Barabási  
 Alain Barrat  
 Marc Barthelemy  
 Stefano Boccaletti  
 Dirk Brockmann  
 Guido Caldarelli  
 Roger Guimerà  

 Shlomo Havlin  
 Jon Kleinberg  
 José Mendes  
 Yamir Moreno  
 Adilson E. Motter  
 Mark Newman  
 Sidney Redner  
 Steven Strogatz  
 Alessandro Vespignani  
 Duncan J. Watts  

See also 

 Network theory  
 Network science  

 Dynamic Network Analysis  
 Complexity Science  

Books 

 Albert-László Barabási, Linked: How Everything is Connected to Everything Else, 2004, ISBN 0-452-28439-2  
 Alain Barrat, Marc Barthelemy, Alessandro Vespignani, Dynamical processes in complex networks, Cambridge 

University Press, 2008, ISBN 978-0-521-87950-7  
 Stefan Bornholdt (Editor) and Heinz Georg Schuster (Editor), Handbook of Graphs and Networks: From the 

Genome to the Internet, 2003, ISBN 3-527-40336-1  
 Guido Caldarelli, Scale-Free Networks Oxford University Press, 2007, ISBN 0-19-921151-7  
 Matthias Dehmer and Frank Emmert-Streib (Eds.), "Analysis of Complex Networks: From Biology to 

Linguistics", Wiley-VCH, 2009, ISBN 3-527-32345-7  
 S.N. Dorogovtsev and J.F.F. Mendes, Evolution of Networks: From biological networks to the Internet and 

WWW, Oxford University Press, 2003, ISBN 0-19-851590-1  
 Mark Newman, Albert-László Barabási, and Duncan J. Watts, The Structure and Dynamics of Networks, 

Princeton University Press, Princeton, 2006, ISBN 978-0-691-11357-9  
 R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the Internet: A statistical physics approach, 

Cambridge University Press, 2004, ISBN 0-521-82698-5  
 Duncan J. Watts, Six Degrees: The Science of a Connected Age, Norton & Company, 2003, ISBN 0-393-04142-5  
 Duncan J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton 

University Press, 2003, ISBN 0-691-11704-7  
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External links 
 Network Science — United States Military Academy - Network Science Center  
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 Resources in Complex Networks — University of São Paulo - Institute of Physics at São Carlos  
 Cx-Nets — Complex Networks Collaboratory  
 GNET — Group of Complex Systems & Random Networks  
 UCLA Human Complex Systems Program  
 New England Complex Systems Institute  
 Santa Fe Institute Networks Group  
 Barabasi Networks Group  
 Cosin Project Codes, Papers and Data on Complex Networks  
 Complex network on arxiv.org  
 [1] — Anna Nagurney's Virtual Center for Supernetworks  
 BIOREL resource for quantitative estimation of the network bias in relation to external information  
 Complexity Virtual Laboratory (VLAB)  
 complexnetworks.fr — French computer science research group on networks  
 

 

5. Flow network 
In graph theory, a flow network is a directed graph where each edge has a capacity and each edge receives a 
flow. The amount of flow on an edge cannot exceed the capacity of the edge. Often in Operations Research, a 
directed graph is called a network, the vertices are called nodes and the edges are called arcs. A flow must satisfy 
the restriction that the amount of flow into a node equals the amount of flow out of it, except when it is a source, 
which has more outgoing flow, or sink, which has more incoming flow. A network can be used to model traffic in a 
road system, fluids in pipes, currents in an electrical circuit, or anything similar in which something travels through 
a network of nodes. 

Definition 

Suppose is a finite directed graph in which every edge has a non-negative, real-valued 

capacity . If , we assume that . We distinguish two vertices: a source and 

a sink . A flow network is a real function with the following three properties for all nodes 
and : 

Capacity 
constraints: .           The flow along an edge can not exceed its capacity. 

Skew symmetry: .     Flow from  to  must be the opposite of the from  to . 

Flow 
conservation: 

 
unless  or . The net flow to a node is zero, except for the source, which 
"produces" flow, and the sink, which "consumes" flow. 

Notice that  is the net flow from to . If the graph represents a physical network, and if there is a real 

capacity of, for example, 4 units from to , and a real flow of 3 units from to , we have and 

. 

The residual capacity of an edge is . This defines a residual network 

denoted , giving the amount of available capacity. See that there can be an edge from to in the 
residual network, even though there is no edge from to in the original network. Since flows in opposite 
directions cancel out, decreasing the flow from to is the same as increasing the flow from to . An 

augmenting path is a path in the residual network, where , , and 

. A network is at maximum flow if and only if there is no augmenting path in the residual 
network. 
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Example 
A flow network showing flow and capacity. 

To the right you see a flow network with source 
labeled s, sink t, and four additional nodes. The flow 
and capacity is denoted f / c. Notice how the 
network upholds skew symmetry, capacity 
constraints and flow conservation. The total amount 
of flow from s to t is 5, which can be easily seen from 
the fact that the total outgoing flow from s is 5, 
which is also the incoming flow to t. We know that 
no flow appears or disappears in any of the other 
nodes. 
 

Residual network for the above flow network, showing residual capacities. 

Below you see the residual network for the given flow. Notice how there is positive residual capacity on some 
edges where the original capacity is zero, for example for the edge (d,c). This flow is not a maximum flow. There is 
available capacity along the paths (s,a,c,t), (s,a,b,d,t) and (s,a,b,d,c,t), which are then the augmenting paths. The 

residual capacity of the first path is min(c(s,a) − 
f(s,a),c(a,c) − f(a,c),c(c,t) − f(c,t)) = min(5 − 3,3 − 2,2 − 
1) = min(2,1,1) = 1. Notice that augmenting path 
(s,a,b,d,c,t) does not exist in the original network, 
but you can send flow along it, and still get a legal 
flow. 
If this is a real network, there might actually be a 
flow of 2 from a to b, and a flow of 1 from b to a, but 
we only maintain the net flow. 

Applications 
Picture a series of water pipes, fitting into a network. Each pipe is of a certain diameter, so it can only maintain a 
flow of a certain amount of water. Anywhere that pipes meet, the total amount of water coming into that junction 
must be equal to the amount going out, otherwise we would quickly run out of water, or we would have a build up 
of water. We have a water inlet, which is the source, and an outlet, the sink. A flow would then be one possible 
way for water to get from source to sink so that the total amount of water coming out of the outlet is consistent. 
Intuitively, the total flow of a network is the rate at which water comes out of the outlet. 

Flows can pertain to people or material over transportation networks, or to electricity over electrical distribution 
systems. For any such physical network, the flow coming into any intermediate node needs to equal the flow 
going out of that node. Bollobás characterizes this constraint in terms of Kirchhoff's current law, while later 
authors (ie: Chartrand) mention its generalization to some conservation equation. 

Flow networks also find applications in ecology: flow networks arise naturally when considering the flow of 
nutrients and energy between different organizations in a food web. The mathematical problems associated with 
such networks are quite different from those that arise in networks of fluid or traffic flow. The field of ecosystem 
network analysis, developed by Robert Ulanowicz and others, involves using concepts from information theory 
and thermodynamics to study the evolution of these networks over time.. 

Generalizations and specializations 
The simplest and most common problem using flow networks is to find what is called the maximum flow, which 
provides the largest possible total flow from the source to the sink in a given graph. There are many other 
problems which can be solved using max flow algorithms, if they are appropriately modeled as flow networks, 
such as bipartite matching, the assignment problem and the transportation problem. 

In a multi-commodity flow problem, you have multiple sources and sinks, and various "commodities" which are to 
flow from a given source to a given sink. This could be for example various goods that are produced at various 
factories, and are to be delivered to various given customers through the same transportation network. 

In a minimum cost flow problem, each edge u,v has a given cost k(u,v), and the cost of sending the flow f(u,v) 

across the edge is . The objective is to send a given amount of flow from the source to the 
sink, at the lowest possible price. 
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In a circulation problem, you have a lower bound l(u,v) on the edges, in addition to the upper bound c(u,v). Each 
edge also has a cost. Often, flow conservation holds for all nodes in a circulation problem, and there is a 
connection from the sink back to the source. In this way, you can dictate the total flow with l(t,s) and c(t,s). The 
flow circulates through the network, hence the name of the problem. 
In a network with gains or generalized network each edge has a gain, a real number (not zero) such that, if the 
edge has gain g, and an amount x flows into the edge at its tail, then an amount gx flows out at the head. 

See also 
 Constructal theory  
 Ford-Fulkerson algorithm  
 Flow (computer networking)  

 Max-flow min-cut theorem  
 Oriented matroid  
 Shortest path problem  

Further reading 

 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin (1993). Network Flows: Theory, Algorithms and 
Applications. Prentice Hall. ISBN 0-13-617549-X.  

 Bollobás, Béla (1979). Graph Theory: An Introductory Course. Heidelberg: Springer-Verlag. ISBN 3-540-90399-2.  
 Chartrand, Gary & Oellermann, Ortrud R. (1993). Applied and Algorithmic Graph Theory. New York: McGraw-

Hill. ISBN 0-07-557101-3.  
 Even, Shimon (1979). Graph Algorithms. Rockville, Maryland: Computer Science Press. ISBN 0-914894-21-8.  
 Gibbons, Alan (1985). Algorithmic Graph Theory. Cambridge: Cambridge University Press. ISBN 0-521-28881-9 

ISBN 0-521-24659-8.  
 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (2001) [1990]. "26". Introduction 

to Algorithms (2nd edition ed.). MIT Press and McGraw-Hill. pp. 696–697. ISBN 0-262-03293-7.  

External links 
 Maximum Flow Problem  
 Real graph instances  
 Software, papers, test graphs, etc.  
 Solutions for network flow problems  
 Software and papers for network flow problems  
 Lemon C++ library with several maximum flow and minimum cost circulation algorithms  
 

 

6. Network diagram 
A network diagram is a general type of diagram, which represents some kind of network. A network in general is 
an interconnected group or system, or a fabric or structure of fibrous elements attached to each other at regular 
intervals, or formally: a graph. 
A network diagram is a special kind of cluster diagram, which even more general represents any cluster or small 
group or bunch of something, structured or not. Both the flow diagram and the tree diagram can be seen as a 
specific type of network diagram. 

There are different types network diagrams: 

 Artificial neural network or "neural network" (NN), is a mathematical model or computational model based on 
biological neural networks. It consists of an interconnected group of artificial neurons and processes 
information using a connectionist approach to computation.  

 Computer network diagram is a schematic depicting the nodes and connections amongst nodes in a computer 
network or, more generally, any telecommunications network.  

 In project management according to Baker et al. (2003), a "network diagram is the logical representation of 
activities, that defines the sequence or the work of a project. It shows the path of a project, lists starting and 
completion dates , and names the responsibilities for each task. At a glance it explains how the work of the 
project goes together... A network for a simple project might consist one or two pages, and on a larger 
project several network diagrams may exist".[1] Specific diagrams here are  

 Project network: a general flow chart depicting the sequence in which a project's terminal elements are 
to be completed by showing terminal elements and their dependencies.  

 PERT network  
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 Neural network diagram: ia a network or circuit of biological neurons or artificial neural networks, which are 
composed of artificial neurons or nodes.  

 A semantic network is a network or circuit of biological neurons. The modern usage of the term often refers 
to artificial neural networks, which are composed of artificial neurons or nodes]].[2]  

 A sociogram is a graphic representation of social links that a person has. It is a sociometric chart that plots the 
structure of interpersonal relations in a group situation.  

Gallery 

 
Artificial neural network 

 
Computer network diagram 

 
Neural network diagram 

 
Project network 

 
PERT diagram 

 
Semantic network 

 
Sociogram 

 
Spin network 

 

Network topologies 
 

 Diagram of different network 
topologies. 
In computer science the elements of a 
network are arranged in certain basic 
shapes (see figure): 

 Ring: The ring network connects each 
node to exactly two other nodes, 
forming a circular pathway for activity 
or signals - a ring. The interaction or 
data travels from node to node, with 
each node handling every packet.  

 Mesh is a way to route data, voice and 
instructions between nodes. It allows for continuous connections and reconfiguration around broken or 
blocked paths by “hopping” from node to node until the destination is reached.  

 Star: The star network consists of one central element, switch, hub or computer, which acts as a conduit to 
coordinate activity or transmit messages.  

 Fully connected: Every node is connected to every other node.  

 Line - Everything connected in a single line.  

 Tree: This consists of tree-configured nodes connected to switches/concentrators, each connected to a linear 
bus backbone. Each hub rebroadcasts all transmissions received from any peripheral node to all peripheral 
nodes on the network, sometimes including the originating node. All peripheral nodes may thus communicate 
with all others by transmitting to, and receiving from, the central node only.  

 Bus: In this network architecture a set of clients are connected via a shared communications line, called a bus.  
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Related topics 
Network theory 
Network theory is an area of applied mathematics and part of graph theory. It has application in many disciplines 
including particle physics, computer science, biology, economics, operations research, and sociology. Network 
theory concerns itself with the study of graphs as a representation of either symmetric relations or, more 
generally, of asymmetric relations between discrete objects. Examples of which include logistical networks, the 
World Wide Web, gene regulatory networks, metabolic networks, social networks, epistemological networks, etc. 
See list of network theory topics for more examples. 
Network topology 
Network topology is the study of the arrangement or mapping of the elements (links, nodes, etc.) of a network, 
especially the physical (real) and logical (virtual) interconnections between nodes.[4] 
Any particular network topology is determined only by the graphical mapping of the configuration of physical 
and/or logical connections between nodes. LAN Network Topology is, therefore, technically a part of graph 
theory. Distances between nodes, physical interconnections, transmission rates, and/or signal types may differ in 
two networks and yet their topologies may be identical. 
See also 
 Computer network  
 Neural network  
 Radio network  
 Television network  

 Telecommunications network  
 Semantic network  
 Social network  
 System context diagram  
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7. Network model (database) 
The network model is a database model conceived as a flexible way of representing objects and their 
relationships. Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and 

relationship types are arcs, is not restricted to being a 
hierarchy or lattice. 

The network model is a database model conceived as a 
flexible way of representing objects and their 
relationships. Its original inventor was Charles 
Bachman, and it was developed into a standard 
specification published in 1969 by the CODASYL 
Consortium. Where the hierarchical model structures 
data as a tree of records, with each record having one 
parent record and many children, the network model 
allows each record to have multiple parent and child 
records, forming a lattice structure. 
 

 Example of a Network Model. 

 
The network model's original inventor was Charles Bachman, and it was developed into a standard specification 
published in 1969 by the CODASYL Consortium. 

Overview 
Where the hierarchical model structures data as a tree of records, with each record having one parent record and 
many children, the network model allows each record to have multiple parent and child records, forming a 
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generalized graph structure. This property applies at two levels: the schema is a generalized graph of record types 
connected by relationship types (called "set types" in CODASYL), and the database itself is a generalized graph of 
record occurrences connected by relationships (CODASYL "sets"). Cycles are permitted at both levels. 
The chief argument in favour of the network model, in comparison to the hierarchic model, was that it allowed a 
more natural modeling of relationships between entities. Although the model was widely implemented and used, 
it failed to become dominant for two main reasons. Firstly, IBM chose to stick to the hierarchical model with semi-
network extensions in their established products such as IMS and DL/I. Secondly, it was eventually displaced by 
the relational model, which offered a higher-level, more declarative interface. Until the early 1980s the 
performance benefits of the low-level navigational interfaces offered by hierarchical and network databases were 
persuasive for many large-scale applications, but as hardware became faster, the extra productivity and flexibility 
of the relational model led to the gradual obsolescence of the network model in corporate enterprise usage. 

Some Well-known Network Databases 
 Digital Equipment Corporation DBMS-10  
 Digital Equipment Corporation DBMS-20  
 Digital Equipment Corporation VAX DBMS  
 Honeywell IDS (Integrated Data Store)  
 IDMS (Integrated Database Management 

System)  

 Raima Data Manager (RDM) Embedded  
 RDM Server  
 TurboIMAGE  
 Univac DMS-1100  

History 
In 1969, the Conference on Data Systems Languages (CODASYL) established the first specification of the network 
database model. This was followed by a second publication in 1971, which became the basis for most 
implementations. Subsequent work continued into the early 1980s, culminating in an ISO specification, but this 
had little influence on products. 

See also 
 CODASYL  
 Navigational database  

 Semantic Web  

References 

Further reading 
 Charles W. Bachman, The Programmer as Navigator. ACM Turing Award lecture, Communications of the ACM, 

Volume 16, Issue 11, 1973, pp. 653-658, ISSN 0001-0782, doi:10.1145/355611.362534  

External links 
 CODASYL Systems Committee "Survey of Data Base Systems", 1968  
 Network (CODASYL) Data Model  
 

 
 

8. Network analysis (electrical circuits) 
A network, in the context of electronics, is a collection of interconnected components. Network analysis is the 
process of finding the voltages across, and the currents through, every component in the network. There are a 
number of different techniques for achieving this. However, for the most part, they assume that the components 
of the network are all linear. The methods described in this article are only applicable to linear network analysis 
except where explicitly stated. 

Definitions 

Component A device with two or more terminals into which, or out of which, charge may flow. 

Node A point at which terminals of more than two components are joined. A conductor with a 
substantially zero resistance is considered to be a node for the purpose of analysis. 

Branch The component(s) joining two nodes. 
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Mesh A group of branches within a network joined so as to form a complete loop. 

Port Two terminals where the current into one is identical to the current out of the other. 

Circuit A current from one terminal of a generator, through load component(s) and back into the other 
terminal. A circuit is, in this sense, a one-port network and is a trivial case to analyse. If there is 
any connection to any other circuits then a non-trivial network has been formed and at least two 
ports must exist. Often, "circuit" and "network" are used interchangeably, but many analysts 
reserve "network" to mean an idealised model consisting of ideal components.[1] 

Transfer 
function 

The relationship of the currents and/or voltages between two ports. Most often, an input port 
and an output port are discussed and the transfer function is described as gain or attenuation. 

Component 
transfer 
function 

For a two-terminal component (i.e. one-port component), the current and voltage are taken as 
the input and output and the transfer function will have units of impedance or admittance (it is 
usually a matter of arbitrary convenience whether voltage or current is considered the input). A 
three (or more) terminal component effectively has two (or more) ports and the transfer 
function cannot be expressed as a single impedance. The usual approach is to express the 
transfer function as a matrix of parameters. These parameters can be impedances, but there is a 
large number of other approaches, see two-port network. 

Equivalent circuits 
A useful procedure in network analysis is to simplify the network by reducing the number of components. This can 
be done by replacing the actual components with other notional components that have the same effect. A 
particular technique might directly reduce the number of components, for instance by combining impedances in 
series. On the other hand it might merely change the form in to one in which the components can be reduced in a 

later operation. For instance, one might transform a voltage generator into 
a current generator using Norton's theorem in order to be able to later 
combine the internal resistance of the generator with a parallel impedance 
load. 
A resistive circuit is a circuit containing only resistors, ideal current sources, 
and ideal voltage sources. If the sources are constant (DC) sources, the 
result is a DC circuit. The analysis of a circuit refers to the process of solving 
for the voltages and currents present in the circuit. The solution principles 
outlined here also apply to phasor analysis of AC circuits. 
Two circuits are said to be equivalent with respect to a pair of terminals if 
the voltage across the terminals and current through the terminals for one 
network have the same relationship as the voltage and current at the 
terminals of the other network. 
If V2 = V1 implies I2 = I1 for all (real) values of V1, then with respect to terminals 
ab and xy, circuit 1 and circuit 2 are equivalent. 

The above is a sufficient definition for a one-port network. For more than one port, then it must be defined that 
the currents and voltages between all pairs of corresponding ports must bear the same relationship. For instance, 
star and delta networks are effectively three port networks and hence require three simultaneous equations to 
fully specify their equivalence. 

Impedances in series and in parallel 
Any two terminal network of impedances can eventually be reduced to a single impedance by successive 
applications of impendances in series or impendances in parallel. 

Impedances in series:       

Impedances in parallel:     

The above simplified for only two impedances in parallel:    
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Delta-wye transformation 
A network of impedances with more than two terminals 
cannot be reduced to a single impedance equivalent circuit. 
An n-terminal network can, at best, be reduced to n 
impedances. For a three terminal network, the three 
impedances can be expressed as a three node delta (Δ) 
network or a four node star (Y) network. These two networks 
are equivalent and the transformations between them are 
given below. A general network with an arbitrary number of 
terminals cannot be reduced to the minimum number of 
impedances using only series and parallel combinations. In 
general, Y-Δ and Δ-Y transformations must also be used. It can 

be shown that this is sufficient to find the minimal network for any arbitrary network with successive applications 
of series, parallel, Y-Δ and Δ-Y; no more complex transformations are required. 
For equivalence, the impedances between any pair of terminals must be the same for both networks, resulting in a 
set of three simultaneous equations. The equations below are expressed as resistances but apply equally to the 
general case with impedances. 

Delta-to-star transformation equations 

 

 

 

Star-to-delta transformation equations 

 

 

 

General form of network node elimination 
The star-to-delta and series-resistor transformations are special cases of the general resistor network node 

elimination algorithm. Any node connected by N resistors (R1 .. RN) to nodes 1 .. N can be replaced by resistors 
interconnecting the remaining N nodes. The resistance between any two nodes x and y is given by: 

 
For a star-to-delta (N = 3) this reduces to: 

 
For a series reduction (N = 2) this reduces to: 
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For a dangling resistor (N = 1) it results in the elimination of the resistor because . 

Source transformation 

 
 A generator with an internal impedance (ie non-ideal generator) can be represented as 

either an ideal voltage generator or an ideal current generator plus the impedance. These two 
forms are equivalent and the transformations are given below. If the two networks are 
equivalent with respect to terminals ab, then V and I must be identical for both networks. Thus, 

or  

 Norton's theorem states that any two-terminal network can be reduced to an ideal current generator and a 
parallel impedance.  

 Thévenin's theorem states that any two-terminal network can be reduced to an ideal voltage generator plus a 
series impedance.  

Simple networks 
Some very simple networks can be analysed without the need to apply the more systematic approaches. 

Voltage division of series components 
Consider n impedances that are connected in series. The voltage Vi across any impedance Zi is 

 

Current division of parallel components 
Consider n impedances that are connected in parallel. The current Ii through any impedance Zi is  

   
for i = 1,2,...,n. 

Special case: Current division of two parallel components 

 

 

Nodal analysis 
1. Label all nodes in the circuit. Arbitrarily select any node as reference. 
2. Define a voltage variable from every remaining node to the reference. These voltage variables must be defined 
as voltage rises with respect to the reference node. 

3. Write a KCL equation for every node except the reference. 
4. Solve the resulting system of equations. 

Mesh analysis 
Mesh — a loop that does not contain an inner loop. 
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1. Count the number of “window panes” in the circuit. Assign a mesh current to each window pane. 
2. Write a KVL equation for every mesh whose current is unknown. 

3. Solve the resulting equations 

Superposition 
In this method, the effect of each generator in turn is calculated. All the generators other than the one being 
considered are removed; either short-circuited in the case of voltage generators, or open circuited in the case of 
current generators. The total current through, or the total voltage across, a particular branch is then calculated by 
summing all the individual currents or voltages. 
There is an underlying assumption to this method that the total current or voltage is a linear superposition of its 
parts. The method cannot, therefore, be used if non-linear components are present. Note that mesh analysis and 
node analysis also implicitly use superposition so these too, are only applicable to linear circuits. 

Choice of method 
Choice of method[2] is to some extent a matter of taste. If the network is particularly simple or only a specific 
current or voltage is required then ad-hoc application of some simple equivalent circuits may yield the answer 
without recourse to the more systematic methods. 

 Superposition is possibly the most conceptually simple method but rapidly leads to a large number of 
equations and messy impedance combinations as the network becomes larger.  

 Nodal analysis: The number of voltage variables, and hence simultaneous equations to solve, equals the 
number of nodes minus one. Every voltage source connected to the reference node reduces the number of 
unknowns (and equations) by one. Nodal analysis is thus best for voltage sources.  

 Mesh analysis: The number of current variables, and hence simultaneous equations to solve, equals the 
number of meshes. Every current source in a mesh reduces the number of unknowns by one. Mesh analysis is 
thus best for current sources. Mesh analysis, however, cannot be used with networks which cannot be drawn 
as a planar network, that is, with no crossing components.[3]  

Transfer function 
A transfer function expresses the relationship between an input and an output of a network. For resistive 
networks, this will always be a simple real number or an expression which boils down to a real number. Resistive 
networks are represented by a system of simultaneous algebraic equations. However in the general case of linear 
networks, the network is represented by a system of simultaneous linear differential equations. In network 
analysis, rather than use the differential equations directly, it is usual practice to carry out a Laplace transform on 
them first and then express the result in terms of the Laplace parameter s, which in general is complex. This is 
described as working in the s-domain. Working with the equations directly would be described as working in the 
time (or t) domain because the results would be expressed as time varying quantities. The Laplace transform is the 
mathematical method of transforming between the s-domain and the t-domain. 

This approach is standard in control theory and is useful for determining stability of a system, for instance, in an 
amplifier with feedback. 

Two terminal component transfer functions 
For two terminal components the transfer function is the relationship between the current input to the device and 
the resulting voltage across it. The transfer function, Z(s), will thus have units of impedance - ohms. For the three 
passive components found in electrical networks, the transfer functions are; 

Resistor  

Inductor  

Capacitor 
 

For a network to which only steady ac signals are applied, s is replaced with jω and the more familiar values from 
ac network theory result. 

Resistor  
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Inductor  

Capacitor 
 

Finally, for a network to which only steady dc is applied, s is replaced with zero and dc network theory applies. 

Resistor  

Inductor  

Capacitor  

Two port network transfer function 

Transfer functions, in general, in control theory are given the symbol H(s). Most commonly in electronics, transfer 
function is defined as the ratio of output voltage to input voltage and given the symbol A(s), or more commonly 
(because analysis is invariably done in terms of sine wave response), A(jω), so that; 

 
The A standing for attenuation, or amplification, depending on context. In general, this will be a complex function 
of jω, which can be derived from an analysis of the impedances in the network and their individual transfer 
functions. Sometimes the analyst is only interested in the magnitiude of the gain and not the phase angle. In this 
case the complex numbers can be eliminated from the transfer function and it might then be written as; 

 

Two port parameters 
The concept of a two-port network can be useful in network analysis as a black box approach to analysis. The 
behaviour of the two-port network in a larger network can be entirely characterised without necessarily stating 
anything about the internal structure. However, to do this it is necessary to have more information than just the 
A(jω) described above. It can be shown that four such parameters are required to fully characterise the two-port 
network. These could be the forward transfer function, the input impedance, the reverse transfer function (ie, the 
voltage appearing at the input when a voltage is applied to the output) and the output impedance. There are 
many others (see the main article for a full listing), one of these expresses all four parameters as impedances. It is 
usual to express the four parameters as a matrix; 

 
The matrix may be abbreviated to a representative element; 

or just  
These concepts are capable of being extended to networks of more than two ports. However, this is rarely done in 
reality as in many practical cases ports are considered either purely input or purely output. If reverse direction 
transfer functions are ignored, a multi-port network can always be decomposed into a number of two-port 
networks. 

Distributed components 
Where a network is composed of discrete components, analysis using two-port networks is a matter of choice, not 
essential. The network can always alternatively be analysed in terms of its individual component transfer 
functions. However, if a network contains distributed components, such as in the case of a transmission line, then 
it is not possible to analyse in terms of individual components since they do not exist. The most common approach 
to this is to model the line as a two-port network and characterise it using two-port parameters (or something 
equivalent to them). Another example of this technique is modelling the carriers crossing the base region in a high 
frequency transistor. The base region has to be modelled as distributed resistance and capacitance rather than 
lumped components. 
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Image analysis 
Transmission lines and certain types of filter design use the image method to determine their transfer parameters. 
In this method, the behaviour of an infinitely long cascade connected chain of identical networks is considered. 
The input and output impedances and the forward and reverse transmission functions are then calculated for this 
infinitely long chain. Although, the theoretical values so obtained can never be exactly realised in practice, in many 
cases they serve as a very good approximation for the behaviour of a finite chain as long as it is not too short. 

Non-linear networks 
Most electronic designs are, in reality, non-linear. There is very little that does not include some semiconductor 
devices. These are invariably non-linear, the transfer function of an ideal semiconductor pn junction is given by the 
very non-linear relationship; 

 
where; 

 i and v are the instantaneous current and voltage.  

 Io is an arbitrary parameter called the reverse leakage current whose value depends on the construction of the 
device.  

 VT is a parameter proportional to temperature called the thermal voltage and equal to about 25mV at room 
temperature.  

There are many other ways that non-linearity can appear in a network. All methods utilising linear superposition 
will fail when non-linear components are present. There are several options for dealing with non-linearity 
depending on the type of circuit and the information the analyst wishes to obtain. 

Boolean analysis of switching networks 
A switching device is one where the non-linearity is utilised to produce two opposite states. CMOS devices in 
digital circuits, for instance, have their output connected to either the positive or the negative supply rail and are 
never found at anything in between except during a transient period when the device is actually switching. Here 
the non-linearity is designed to be extreme, and the analyst can actually take advantage of that fact. These kinds 
of networks can be analysed using Boolean algebra by assigning the two states ("on"/"off", "positive"/"negative" 
or whatever states are being used) to the boolean constants "0" and "1". 

The transients are ignored in this analysis, along with any slight discrepancy between the actual state of the device 
and the nominal state assigned to a boolean value. For instance, boolean "1" may be assigned to the state of +5V. 
The output of the device may actually be +4.5V but the analyst still considers this to be boolean "1". Device 
manufacturers will usually specify a range of values in their data sheets that are to be considered undefined (ie the 
result will be unpredictable). 
The transients are not entirely uninteresting to the analyst. The maximum rate of switching is determined by the 
speed of transition from one state to the other. Happily for the analyst, for many devices most of the transition 
occurs in the linear portion of the devices transfer function and linear analysis can be applied to obtain at least an 
approximate answer. 
It is mathematically possible to derive boolean algebras which have more than two states. There is not too much 
use found for these in electronics, although three-state devices are passingly common. 

Separation of bias and signal analyses 
This technique is used where the operation of the circuit is to be essentially linear, but the devices used to 
implement it are non-linear. A transistor amplifier is an example of this kind of network. The essence of this 
technique is to separate the analysis in to two parts. Firstly, the dc biases are analysed using some non-linear 
method. This establishes the quiescent operating point of the circuit. Secondly, the small signal characteristics of 
the circuit are analysed using linear network analysis. Examples of methods that can be used for both these stages 
are given below. 

Graphical method of dc analysis 
In a great many circuit designs, the dc bias is fed to a non-linear component via a resistor (or possibly a network of 
resistors). Since resistors are linear components, it is particularly easy to determine the quiescent operating point 
of the non-linear device from a graph of its transfer function. The method is as follows: from linear network 
analysis the output transfer function (that is output voltage against output current) is calculated for the network 
of resistor(s) and the generator driving them. This will be a straight line and can readily be superimposed on the 
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transfer function plot of the non-linear device. The point where the lines cross is the quiescent operating point. 
Perhaps the easiest practical method is to calculate the (linear) network open circuit voltage and short circuit 
current and plot these on the transfer function of the non-linear device. The straight line joining these two point is 
the transfer function of the network. 
In reality, the designer of the circuit would proceed in the reverse direction to that described. Starting from a plot 
provided in the manufacturers data sheet for the non-linear device, the designer would choose the desired 
operating point and then calculate the linear component values required to achieve it. 

It is still possible to use this method if the device being biased has its bias fed through another device which is 
itself non-linear - a diode for instance. In this case however, the plot of the network transfer function onto the 
device being biased would no longer be a straight line and is consequently more tedious to do. 

Small signal equivalent circuit 
This method can be used where the deviation of the input and output signals in a network stay within a 
substantially linear portion of the non-linear devices transfer function, or else are so small that the curve of the 
transfer function can be considered linear. Under a set of these specific conditions, the non-linear device can be 
represented by an equivalent linear network. It must be remembered that this equivalent circuit is entirely 
notional and only valid for the small signal deviations. It is entirely inapplicable to the dc biasing of the device. 
For a simple two-terminal device, the small signal equivalent circuit may be no more than two components. A 
resistance equal to the slope of the v/i curve at the operating point (called the dynamic resistance), and tangent to 
the curve. A generator, because this tangent will not, in general, pass through the origin. With more terminals, 
more complicated equivalent circuits are required. 
A popular form of specifying the small signal equivalent circuit amongst transistor manufacturers is to use the 
two-port network parameters known as [h] parameters. These are a matrix of four parameters as with the [z] 
parameters but in the case of the [h] parameters they are a hybrid mixture of impedances, admittances, current 
gains and voltage gains. In this model the three terminal transistor is considered to be a two port network, one of 
its terminals being common to both ports. The [h] parameters are quite different depending on which terminal is 
chosen as the common one. The most important parameter for transistors is usually the forward current gain, h21, 
in the common emitter configuration. This is designated hfe on data sheets. 
The small signal equivalent circuit in terms of two-port parameters leads to the concept of dependent generators. 
That is, the value of a voltage or current generator depends linearly on a voltage or current elsewhere in the 
circuit. For instance the [z] parameter model leads to dependent voltage generators as shown in this diagram; 

 
 [z] parameter equivalent circuit showing dependent voltage generators 

There will always be dependent generators in a two-port parameter equivalent circuit. This applies to the [h] 
parameters as well as to the [z] and any other kind. These dependencies must be preserved when developing the 
equations in a larger linear network analysis. 

Piecewise linear method 
In this method, the transfer function of the non-linear device is broken up into regions. Each of these regions is 
approximated by a straight line. Thus, the transfer function will be linear up to a particular point where there will 
be a discontinuity. Past this point the transfer function will again be linear but with a different slope. 
A well known application of this method is the approximation of the transfer function of a pn junction diode. The 
actual transfer function of an ideal diode has been given at the top of this (non-linear) section. However, this 
formula is rarely used in network analysis, a piecewise approximation being used instead. It can be seen that the 
diode current rapidly diminishes to -Io as the voltage falls. This current, for most purposes, is so small it can be 
ignored. With increasing voltage, the current increases exponentially. The diode is modelled as an open circuit up 
to the knee of the exponential curve, then past this point as a resistor equal to the bulk resistance of the 
semiconducting material. 
The commonly accepted values for the transition point voltage are 0.7V for silicon devices and 0.3V for germanium 
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devices. An even simpler model of the diode, sometimes used in switching applications, is short circuit for forward 
voltages and open circuit for reverse voltages. 
The model of a forward biased pn junction having an approximately constant 0.7V is also a much used 
approximation for transistor base-emitter junction voltage in amplifier design. 
The piecewise method is similar to the small signal method in that linear network analysis techniques can only be 
applied if the signal stays within certain bounds. If the signal crosses a discontinuity point then the model is no 
longer valid for linear analysis purposes. The model does have the advantage over small signal however, in that it 
is equally applicable to signal and dc bias. These can therefore both be analysed in the same operations and will be 
linearly superimposable. 

Time-varying components 
In linear analysis, the components of the network are assumed to be unchanging, but in some circuits this does 
not apply, such as sweep oscillators, voltage controlled amplifiers, and variable equalisers. In many circumstances 
the change in component value is periodic. A non-linear component excited with a periodic signal, for instance, 
can be represented as periodically varying linear component. Sidney Darlington disclosed a method of analysing 
such periodic time varying circuits. He developed canonical circuit forms which are analogous to the canonical 
forms of Ronald Foster and Wilhelm Cauer used for analysing linear circuits.[4] 

See also 
 Bartlett's bisection theorem  
 Circuit theory  
 Equivalent impedance transforms  
 Kirchhoff's circuit laws  
 Mesh analysis  
 Millman's Theorem  
 Ohm's law  

 Reciprocity theorem  
 Resistive circuit  
 Series and parallel circuits  
 Tellegen's theorem  
 Two-port network  
 Wye-delta transform  
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9. Social network 
A social network is a social structure made of individuals (or organizations) called "nodes," which are tied 
(connected) by one or more specific types of interdependency, such as friendship, kinship, financial exchange, 
dislike, sexual relationships, or relationships of beliefs, knowledge or prestige. 

Social network analysis views social relationships in terms of network theory consisting of nodes and ties. Nodes 
are the individual actors within the networks, and ties are the relationships between the actors. The resulting 
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graph-based structures are often very complex. There can be many kinds of ties between the nodes. Research in a 
number of academic fields has shown that social networks operate on many levels, from families up to the level of 
nations, and play a critical role in determining the way problems are solved, organizations are run, and the degree 
to which individuals succeed in achieving their goals. 
In its simplest form, a social network is a map of all of the relevant ties between all the nodes being studied. The 
network can also be used to measure social capital -- the value that an individual gets from the social network. 
These concepts are often displayed in a social network diagram, where nodes are the points and ties are the lines. 

Social network analysis  
Social network analysis (related to network theory) has emerged as a key technique in modern sociology. It has 
also gained a significant following in anthropology, biology, communication studies, economics, geography, 
information science, organizational studies, social psychology, and sociolinguistics, and has become a popular 
topic of speculation and study. 

 An example of a social network diagram. The node with 
the highest betweenness centrality is marked in yellow. 
People have used the idea of "social network" loosely for 
over a century to connote complex sets of relationships 
between members of social systems at all scales, from 
interpersonal to international. In 1954, J. A. Barnes started 
using the term systematically to denote patterns of ties, 
encompassing concepts traditionally used by the public 
and those used by social scientists: bounded groups (e.g., 
tribes, families) and social categories (e.g., gender, 
ethnicity). Scholars such as S.D. Berkowitz, Stephen 
Borgatti, Ronald Burt, Kathleen Carley, Martin Everett, 
Katherine Faust, Linton Freeman, Mark Granovetter, David 
Knoke, David Krackhardt, Peter Marsden, Nicholas Mullins, 
Anatol Rapoport, Stanley Wasserman, Barry Wellman, 
Douglas R. White, and Harrison White expanded the use of 
systematic social network analysis.[1] 

Social network analysis has now moved from being a 
suggestive metaphor to an analytic approach to a 
paradigm, with its own theoretical statements, methods, 
social network analysis software, and researchers. 
Analysts reason from whole to part; from structure to 

relation to individual; from behavior to attitude. They typically either study whole networks (also known as 
complete networks), all of the ties containing specified relations in a defined population, or personal networks (also 
known as egocentric networks), the ties that specified people have, such as their "personal communities".[2] The 
distinction between whole/complete networks and personal/egocentric networks has depended largely on how 
analysts were able to gather data. That is, for groups such as companies, schools, or membership societies, the 
analyst was expected to have complete information about who was in the network, all participants being both 
potential egos and alters. Personal/egocentric studies were typically conducted when identities of egos were 
known, but not their alters. These studies rely on the egos to provide information about the identities of alters 
and there is no expectation that the various egos or sets of alters will be tied to each other. A snowball network 
refers to the idea that the alters identified in an egocentric survey then become egos themselves and are able in 
turn to nominate additional alters. While there are severe logistic limits to conducting snowball network studies, a 
method for examining hybrid networks has recently been developed in which egos in complete networks can 
nominate alters otherwise not listed who are then available for all subsequent egos to see. [3] The hybrid network 
may be valuable for examining whole/complete networks that are expected to include important players beyond 
those who are formally identified. For example, employees of a company often work with non-company 
consultants who may be part of a network that cannot fully be defined prior to data collection. 
Several analytic tendencies distinguish social network analysis:[4] 

There is no assumption that groups are the building blocks of society: the approach is open to studying less-
bounded social systems, from nonlocal communities to links among websites.  
Rather than treating individuals (persons, organizations, states) as discrete units of analysis, it focuses on how 
the structure of ties affects individuals and their relationships.  
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In contrast to analyses that assume that socialization into norms determines behavior, network analysis looks to 
see the extent to which the structure and composition of ties affect norms.  

The shape of a social network helps determine a network's usefulness to its individuals. Smaller, tighter networks 
can be less useful to their members than networks with lots of loose connections (weak ties) to individuals 
outside the main network. More open networks, with many weak ties and social connections, are more likely to 
introduce new ideas and opportunities to their members than closed networks with many redundant ties. In other 
words, a group of friends who only do things with each other already share the same knowledge and 
opportunities. A group of individuals with connections to other social worlds is likely to have access to a wider 
range of information. It is better for individual success to have connections to a variety of networks rather than 
many connections within a single network. Similarly, individuals can exercise influence or act as brokers within 
their social networks by bridging two networks that are not directly linked (called filling structural holes).[5] 

The power of social network analysis stems from its difference from traditional social scientific studies, which 
assume that it is the attributes of individual actors—whether they are friendly or unfriendly, smart or dumb, etc.—
that matter. Social network analysis produces an alternate view, where the attributes of individuals are less 
important than their relationships and ties with other actors within the network. This approach has turned out to 
be useful for explaining many real-world phenomena, but leaves less room for individual agency, the ability for 
individuals to influence their success, because so much of it rests within the structure of their network. 
Social networks have also been used to examine how organizations interact with each other, characterizing the 
many informal connections that link executives together, as well as associations and connections between 
individual employees at different organizations. For example, power within organizations often comes more from 
the degree to which an individual within a network is at the center of many relationships than actual job title. 
Social networks also play a key role in hiring, in business success, and in job performance. Networks provide ways 
for companies to gather information, deter competition, and collude in setting prices or policies.[6] 

History of social network analysis 
A summary of the progress of social networks and social network analysis has been written by Linton Freeman.[7] 
Precursors of social networks in the late 1800s include Émile Durkheim and Ferdinand Tönnies. Tönnies argued 
that social groups can exist as personal and direct social ties that either link individuals who share values and belief 
(gemeinschaft) or impersonal, formal, and instrumental social links (gesellschaft). Durkheim gave a non-
individualistic explanation of social facts arguing that social phenomena arise when interacting individuals 
constitute a reality that can no longer be accounted for in terms of the properties of individual actors. He 
distinguished between a traditional society – "mechanical solidarity" – which prevails if individual differences are 
minimized, and the modern society – "organic solidarity" – that develops out of cooperation between 
differentiated individuals with independent roles. 

Georg Simmel, writing at the turn of the twentieth century, was the first scholar to think directly in social network 
terms. His essays pointed to the nature of network size on interaction and to the likelihood of interaction in 
ramified, loosely-knit networks rather than groups (Simmel,               1908/1971         1908/1971). 

After a hiatus in the first decades of the twentieth century, three main traditions in social networks appeared. In 
the 1930s, J.L. Moreno pioneered the systematic recording and analysis of social interaction in small groups, 
especially classrooms and work groups (sociometry), while a Harvard group led by W. Lloyd Warner and Elton 
Mayo explored interpersonal relations at work. In 1940, A.R. Radcliffe-Brown's presidential address to British 
anthropologists urged the systematic study of networks.[8] However, it took about 15 years before this call was 
followed-up systematically. 
Social network analysis developed with the kinship studies of Elizabeth Bott in England in the 1950s and the 1950s-
1960s urbanization studies of the University of Manchester group of anthropologists (centered around Max 
Gluckman and later J. Clyde Mitchell) investigating community networks in southern Africa, India and the United 
Kingdom. Concomitantly, British anthropologist S.F. Nadel codified a theory of social structure that was influential 
in later network analysis.[9] 
In the 1960s-1970s, a growing number of scholars worked to combine the different tracks and traditions. One large 
group was centered around Harrison White and his students at Harvard University: Ivan Chase, Bonnie Erickson, 
Harriet Friedmann, Mark Granovetter, Nancy Howell, Joel Levine, Nicholas Mullins, John Padgett, Michael 
Schwartz and Barry Wellman. Also important in this early group were Charles Tilly, who focused on networks in 
political sociology and social movements, and Stanley Milgram, who developed the "six degrees of separation" 
thesis.[10] White's group thought of themselves as rebelling against the reigning structural-functionalist orthodoxy 
of then-dominant Harvard sociologist Talcott Parsons, leading them to devalue concerns with symbols, values, 
norms and culture. They also were opposed to the methodological individualism espoused by another Harvard 
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sociologist, George Homans, which was endemic among the dominant survey researchers and positivists of the 
time. Mark Granovetter and Barry Wellman are among the former students of White who have elaborated and 
popularized social network analysis.[11] 
White's was not the only group. Significant independent work was done by scholars elsewhere: University of 
California Irvine social scientists interested in mathematical applications, centered around Linton Freeman, 
including John Boyd, Susan Freeman, Kathryn Faust, A. Kimball Romney and Douglas White; quantitative analysts 
at the University of Chicago, including Joseph Galaskiewicz, Wendy Griswold, Edward Laumann, Peter Marsden, 
Martina Morris, and John Padgett; and communication scholars at Michigan State University, including Nan Lin 
and Everett Rogers. A substantively-oriented University of Toronto sociology group developed in the 1970s, 
centered on former students of Harrison White: S.D. Berkowitz, Harriet Friedmann, Nancy Leslie Howard, Nancy 
Howell, Lorne Tepperman and Barry Wellman, and also including noted modeler and game theorist Anatol 
Rapoport.[12] 

Research 
Social network analysis has been used in epidemiology to help understand how patterns of human contact aid or 
inhibit the spread of diseases such as HIV in a population. The evolution of social networks can sometimes be 
modeled by the use of agent based models, providing insight into the interplay between communication rules, 
rumor spreading and social structure. 
SNA may also be an effective tool for mass surveillance -- for example the Total Information Awareness program 
was doing in-depth research on strategies to analyze social networks to determine whether or not U.S. citizens 
were political threats. 
Diffusion of innovations theory explores social networks and their role in influencing the spread of new ideas and 
practices. Change agents and opinion leaders often play major roles in spurring the adoption of innovations, 
although factors inherent to the innovations also play a role. 

Robin Dunbar has suggested that the typical size of a egocentric network is constrained to about 150 members 
due to possible limits in the capacity of the human communication channel. The rule arises from cross-cultural 
studies in sociology and especially anthropology of the maximum size of a village (in modern parlance most 
reasonably understood as an ecovillage). It is theorized in evolutionary psychology that the number may be some 
kind of limit of average human ability to recognize members and track emotional facts about all members of a 
group. However, it may be due to economics and the need to track "free riders", as it may be easier in larger 
groups to take advantage of the benefits of living in a community without contributing to those benefits. 
Mark Granovetter found in one study that more numerous weak ties can be important in seeking information and 
innovation. Cliques have a tendency to have more homogeneous opinions as well as share many common traits. 
This homophilic tendency was the reason for the members of the cliques to be attracted together in the first 
place. However, being similar, each member of the clique would also know more or less what the other members 
knew. To find new information or insights, members of the clique will have to look beyond the clique to its other 
friends and acquaintances. This is what Granovetter called the "the strength of weak ties". 

Guanxi is a central concept in Chinese society (and other East Asian cultures) that can be summarized as the use of 
personal influence. Guanxi can be studied from a social network approach.[13] 
The small world phenomenon is the hypothesis that the chain of social acquaintances required to connect one 
arbitrary person to another arbitrary person anywhere in the world is generally short. The concept gave rise to the 
famous phrase six degrees of separation after a 1967 small world experiment by psychologist Stanley Milgram. In 
Milgram's experiment, a sample of US individuals were asked to reach a particular target person by passing a 
message along a chain of acquaintances. The average length of successful chains turned out to be about five 
intermediaries or six separation steps (the majority of chains in that study actually failed to complete). The 
methods (and ethics as well) of Milgram's experiment was later questioned by an American scholar, and some 
further research to replicate Milgram's findings had found that the degrees of connection needed could be 
higher.[14] Academic researchers continue to explore this phenomenon as Internet-based communication 
technology has supplemented the phone and postal systems available during the times of Milgram. A recent 
electronic small world experiment at Columbia University found that about five to seven degrees of separation are 
sufficient for connecting any two people through e-mail.[15] 

Collaboration graphs can be used to illustrate good and bad relationships between humans. A positive edge 
between two nodes denotes a positive relationship (friendship, alliance, dating) and a negative edge between two 
nodes denotes a negative relationship (hatred, anger). Signed social network graphs can be used to predict the 
future evolution of the graph. In signed social networks, there is the concept of "balanced" and "unbalanced" 
cycles. A balanced cycle is defined as a cycle where the product of all the signs are positive. Balanced graphs 
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represent a group of people who are unlikely to change their opinions of the other people in the group. 
Unbalanced graphs represent a group of people who are very likely to change their opinions of the people in their 
group. For example, a group of 3 people (A, B, and C) where A and B have a positive relationship, B and C have a 
positive relationship, but C and A have a negative relationship is an unbalanced cycle. This group is very likely to 
morph into a balanced cycle, such as one where B only has a good relationship with A, and both A and B have a 
negative relationship with C. By using the concept of balances and unbalanced cycles, the evolution of signed 
social network graphs can be predicted. 

One study has found that happiness tends to be correlated in social networks. When a person is happy, nearby 
friends have a 25 percent higher chance of being happy themselves. Furthermore, people at the center of a social 
network tend to become happier in the future than those at the periphery. Clusters of happy and unhappy people 
were discerned within the studied networks, with a reach of three degrees of separation: a person's happiness 
was associated with the level of happiness of their friends' friends' friends.[16] 
Some researchers have suggested that human social networks may have a genetic basis.[17] Using a sample of 
twins from the National Longitudinal Study of Adolescent Health, they found that in-degree (the number of times 
a person is named as a friend), transitivity (the probability that two friends are friends with one another), and 
betweenness centrality (the number of paths in the network that pass through a given person) are all significantly 
heritable. Existing models of network formation cannot account for this intrinsic node variation, so the 
researchers propose an alternative "Attract and Introduce" model that can explain heritability and many other 
features of human social networks.[18] 

Application to Environmental Issues 
The 1984 book The IRG Solution argued that central media and government-type hierarchical organizations could 
not adequately understand the environmental crisis we were manufacturing, or how to initiate adequate 
solutions. It argued that the widespread introduction of Information Routing Groups was required to create a 
social network whose overall intelligence could collectively understand the issues and devise and implement 
correct workeable solutions and policies. 

Metrics (Measures) in social network analysis 
Betweenness  
The extent to which a node lies between other nodes in the network. This measure takes into account the 
connectivity of the node's neighbors, giving a higher value for nodes which bridge clusters. The measure reflects 
the number of people who a person is connecting indirectly through their direct links.[19]  
Bridge  
An edge is said to be a bridge if deleting it would cause its endpoints to lie in different components of a graph.  
Centrality  
This measure gives a rough indication of the social power of a node based on how well they "connect" the 
network. "Betweenness", "Closeness", and "Degree" are all measures of centrality.  
Centralization  
The difference between the number of links for each node divided by maximum possible sum of differences. A 
centralized network will have many of its links dispersed around one or a few nodes, while a decentralized 
network is one in which there is little variation between the number of links each node possesses.  
Closeness  
The degree an individual is near all other individuals in a network (directly or indirectly). It reflects the ability to 
access information through the "grapevine" of network members. Thus, closeness is the inverse of the sum of the 
shortest distances between each individual and every other person in the network. (See also: Proxemics) The 
shortest path may also be known as the "geodesic distance".  
Clustering coefficient  
A measure of the likelihood that two associates of a node are associates themselves. A higher clustering 
coefficient indicates a greater 'cliquishness'.  
Cohesion  
The degree to which actors are connected directly to each other by cohesive bonds. Groups are identified as 
‘cliques’ if every individual is directly tied to every other individual, ‘social circles’ if there is less stringency of direct 
contact, which is imprecise, or as structurally cohesive blocks if precision is wanted.[20]  
Degree  
The count of the number of ties to other actors in the network. See also degree (graph theory).  
(Individual-level) Density  
The degree a respondent's ties know one another/ proportion of ties among an individual's nominees. Network or 
global-level density is the proportion of ties in a network relative to the total number possible (sparse versus 
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dense networks).  
Flow betweenness centrality  
The degree that a node contributes to sum of maximum flow between all pairs of nodes (not that node).  
Eigenvector centrality  
A measure of the importance of a node in a network. It assigns relative scores to all nodes in the network based 
on the principle that connections to nodes having a high score contribute more to the score of the node in 
question.  
Local Bridge  
An edge is a local bridge if its endpoints share no common neighbors. Unlike a bridge, a local bridge is contained in 
a cycle.  
Path Length  
The distances between pairs of nodes in the network. Average path-length is the average of these distances 
between all pairs of nodes.  
Prestige  
In a directed graph prestige is the term used to describe a node's centrality. "Degree Prestige", "Proximity 
Prestige", and "Status Prestige" are all measures of Prestige. See also degree (graph theory).  
Radiality  
Degree an individual’s network reaches out into the network and provides novel information and influence.  
Reach  
The degree any member of a network can reach other members of the network.  
Structural cohesion  
The minimum number of members who, if removed from a group, would disconnect the group.[21]  
Structural equivalence  
Refers to the extent to which nodes have a common set of linkages to other nodes in the system. The nodes don’t 
need to have any ties to each other to be structurally equivalent.  
Structural hole  
Static holes that can be strategically filled by connecting one or more links to link together other points. Linked to 
ideas of social capital: if you link to two people who are not linked you can control their communication.  

Network analytic software 
Network analytic tools are used to represent the nodes (agents) and edges (relationships) in a network, and to 
analyze the network data. Like other software tools, the data can be saved in external files. Additional information 
comparing the various data input formats used by network analysis software packages is available at NetWiki. 
Network analysis tools allow researchers to investigate large networks like the Internet, disease transmission, etc. 
These tools provide mathematical functions that can be applied to the network model. 
Visual representation of social networks is important to understand the network data and convey the result of the 
analysis [2]. Network analysis tools are used to change the layout, colors, size and advanced properties of the 
network representation. 

Patents 
 There has been rapid growth in the number of US patent applications 

that cover new technologies related to social networking. The number of 
published applications has been growing at about 250% per year over the 
past five years. There are now over 2000 published applications. [22] Only 
about 100 of these applications have issued as patents, however, largely 
due to the multi-year backlog in examination of business method patents 
and ethical issues connected with this patent category [23] 

 

See also 

 Clique  
 Community of practice  
 Dynamic network analysis  
 Digital footprint  
 FOAF (software) (Friend of a friend)  
 Friendship paradox  
 Knowledge management  

 

 Social networking service  
 Social network aggregation  
 Social network analysis software  
 Social software  
 Social unit  
 Social web  
 SocialRank  
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 List of social networking websites  
 Mathematical sociology  
 Metcalfe's Law  
 Network analysis  
 Network of practice  
 Network science  
 Organizational patterns  
 Small world phenomenon  
 Social-circles network model  

 

 Socio-technical systems  
 Surveillance  
 Triadic closure  
 Value network  
 Virtual community  
 Virtual organization  
 Weighted network  
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10. Semantic network 
 

 
 Example of a semantic network 

 

A semantic network is a network which represents 
semantic relations among concepts. This is often used 
as a form of knowledge representation. It is a directed 
or undirected graph consisting of vertices, which 
represent concepts, and edges.[1] 

 

 
 

History 
"Semantic Nets" were first invented for computers by Richard H. Richens of the Cambridge Language Research 
Unit in 1956 as an "interlingua" for machine translation of natural languages.  

They were developed by Robert F. Simmons at System Development Corporation in the early 1960s and later 
featured prominently in the work of Allan M. Collins and colleagues (e.g., Collins and Quillian;[2][3] Collins and 
Loftus).[4] 
In the 1960s to 1980s the idea of a semantic link was developed within hypertext systems as the most basic unit, 
or edge, in a semantic network. These ideas were extremely influential, and there have been many attempts to 
add typed link semantics to HTML and XML. 

Semantic network construction 
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WordNet 

An example of a semantic network is WordNet, a lexical database of English. It groups English words into sets of 
synonyms called synsets, provides short, general definitions, and records the various semantic relations between 
these synonym sets. Some of the most common semantic relations defined are meronymy (A is part of B, i.e. B has 
A as a part of itself), holonymy (B is part of A, i.e. A has B as a part of itself), hyponymy (or troponymy) (A is 
subordinate of B; A is kind of B), hypernymy (A is superordinate of B), synonymy (A denotes the same as B) and 
antonymy (A denotes the opposite of B). 
WordNet properties have been studied from a network theory perspective and compared to other semantic 
networks created from Roget's Thesaurus and word association tasks. From this perspective the three of them are 
a small world structure.[5] 
It is also possible to represent logical descriptions using semantic networks such as the existential Graphs of 
Charles Sanders Peirce or the related Conceptual Graphs of John F. Sowa.[1] These have expressive power equal to 
or exceeding standard first-order predicate logic. Unlike WordNet or other lexical or browsing networks, semantic 
networks using these representations can be used for reliable automated logical deduction. Some automated 
reasoners exploit the graph-theoretic features of the networks during processing. 

Other examples 
Other examples of semantic networks are Gellish models. Gellish English with its Gellish English dictionary, is a 
formal language that is defined as a network of relations between concepts and names of concepts. Gellish 
English is a formal subset of natural English, just as Gellish Dutch is a formal subset of Dutch, whereas multiple 
languages share the same concepts. Other Gellish networks consist of knowledge models and information models 
that are expressed in the Gellish language. A Gellish network is a network of (binary) relations between things. 
Each relation in the network is an expression of a fact that is classified by a relation type. Each relation type itself is 
a concept that is defined in the Gellish language dictionary. Each related thing is either a concept or an individual 
thing that is classified by a concept. The definitions of concepts are created in the form of definition models 
(definition networks) that together form a Gellish Dictionary. A Gellish network can be documented in a Gellish 
database and is computer interpretable. 

Software tools 
There are also elaborate types of semantic networks connected with corresponding sets of software tools used 
for lexical knowledge engineering, like the Semantic Network Processing System (SNePS) of Stuart C. Shapiro[6] or 
the MultiNet paradigm of Hermann Helbig,[7] especially suited for the semantic representation of natural language 
expressions and used in several NLP applications. 

See also 
 Conceptual graph  
 Knowledge representation  
 Mind map  
 Network diagram  

 Semantic lexicon  
 Semantic neural network  
 Unified Medical Language System  
 Word Sense Disambiguation  

Examples 

 Lexipedia  
 WordNet  

 SNOMED CT  
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 Allen, J. and A. Frisch (1982). "What's in a Semantic Network". In: Proceedings of the 20th. annual meeting of 

ACL, Toronto, pp. 19-27.  

 John F. Sowa, Alexander Borgida (1991). Principles of Semantic Networks: Explorations in the Representation of 
Knowledge.  

External links 
 "Semantic Networks" by John F. Sowa  

 "Semantic Link Nework" by Hai Zhuge  
 

 

11. Radio and Television networks 
There are two types of radio networks currently in use around the world: the one-to-many broadcast type 
commonly used for public information and entertainment; and the two-way type used more commonly for public 
safety and public services such as police, fire, taxis, and delivery services. Following is a description of the former 
type of radio network although many of the same components and much of the same basic technology applies to 
both. 

The Broadcast type of radio network is a network system which distributes programming to multiple stations 
simultaneously, or slightly delayed, for the purpose of extending total coverage beyond the limits of a single 
broadcast signal. The resulting expanded audience for programming or information essentially applies the 
benefits of mass-production to the broadcasting enterprise. A radio network has two sales departments, one to 
package and sell programs to radio stations, and one to sell the audience of those programs to advertisers. 

Most radio networks also produce much of their programming. Originally, radio networks owned some or all of 
the radio stations that broadcast the network's programming. Presently however, there are many networks that 
do not own any stations and only produce and/or distribute programming. Similarly station ownership does not 
always indicate network affiliation. A company might own stations in several different markets and purchase 
programming from a variety of networks. 
Radio networks rose rapidly with the growth of regular broadcasting of radio to home listeners in the 1920s. This 
growth took various paths in different places. In Britain the BBC was developed with public funding, in the form of 
a broadcast receiving license, and a broadcasting monopoly in its early decades. In contrast, in the United States 
of America various competing commercial networks arose funded by advertising revenue. In that instance, the 
same corporation that owned or operated the network often manufactured and marketed the listener’s radio. 
Major technical challenges to be overcome when distributing programs over long distances are maintaining signal 
quality and managing the number of switching/relay points in the signal chain. Early on, programs were sent to 
remote stations (either owned or affiliated) by various methods, including leased telephone lines, pre-recorded 
gramophone records and audio tape. The world's first all-radio, non-wireline network was claimed to be the Rural 
Radio Network, a group of six upstate New York FM stations that began operation in June 1948. Terrestrial 
microwave relay, a technology later introduced to link stations, has been largely supplanted by coaxial cable, fiber, 
and satellite, which usually offer superior cost-benefit ratios. 

Many early radio networks evolved into Television networks. 

Radio network 
The Two-way type of radio network shares many of the same technologies and components as the Broadcast 
type radio network but is generally set up with fixed broadcast points (transmitters) with co-located receivers and 
mobile receivers/transmitters or Tran-ceivers. In this way both the fixed and mobile radio units can communicate 
with each other over broad geographic regions ranging in size from small single cities to entire states/provinces or 
countries. There are many ways in which multiple fixed transmit/receive sites can be interconnected to achieve the 
range of coverage required by the jurisdiction or authority implementing the system: conventional wireless links in 
numerous frequency bands, fibre-optic links, or micro-wave links. In all of these cases the signals are typically 
backhauled to a central switch of some type where the radio message is processed and resent (repeated) to all 
transmitter sites where it is required to be heard. 
In contemporary two-way radio systems a concept called trunking is commonly used to achieve better efficiency 
of radio spectrum use and provide very wide ranging coverage with no switching of channels required by the 
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mobile radio user as it roams throughout the system coverage. Trunking of two-way radio is identical to the 
concept used for cellular phone systems where each fixed and mobile radio is specifically identified to the system 
Controller and its operation is switched by the controller. See also the entries Two-way radio and Trunked radio 
system to see more detail on how various types of radios and radio systems work. 

Television network 
A television network is a distribution network for television content whereby a central operation provides 
programming for many television stations. Until the mid-1980s, television programming in most countries of the 
world was dominated by a small number of broadcast networks. Many early television networks (e.g. the BBC, 
NBC or CBS) evolved from earlier radio networks. 
In countries where most networks broadcast identical, centrally originated content to all their stations and where 
most individual transmitters therefore operate only as large "repeater stations", the terms television network, 
television channel and television station have become interchangeable in everyday language, with only 
professionals in TV-related occupations continuing to make a difference between them. Within the industry, a 
tiering is sometimes created among groups of networks based on whether their programming is simultaneously 
originated from a central point, and whether the network master control has the technical and administrative 
capability to take over the programming of their affiliates in real-time when it deems this necessary—the most 
common example being breaking national news events. 
In North America in particular, many television channels available via cable and satellite television are branded as 
"networks" but are not truly networks in the sense defined above, as they are singular operations – they have no 
affiliates or component stations. Such channels are more precisely referred to by terms such as "specialty 
channels" (Canada) or "cable networks" (U.S.), although the latter term is somewhat of a misnomer, even though 
these channels are networked across the country by various cable and satellite systems. 
A network may or may not produce all of its own programming. If not, production houses such as Warner Bros. 
and Sony Pictures can distribute their content to the different networks and it is common that a certain 
production house may have programmes on two or more rival networks. Similarly, some networks may import 
television programmes from other countries or use archival programming to help complement their schedules. 

Regulation 
FCC regulations in the United States restricted the number of television stations that could be owned by any one 
network, company or individual. This led to a system where most local television stations were independently 
owned, but received programming from the network through a franchising contract, except in a few big cities that 
had network owned-and-operated stations and independent stations. In the early days of television, when there 
were often only one or two stations broadcasting in an area, the stations were usually affiliated with several 
networks and were able to choose which programs to air. Eventually, as more stations were licensed, it became 
common for each station to be affiliated with only one network and carry all of the "prime time" network 
programs. Local stations however occasionally break from regularly scheduled network programming, especially 
when there is breaking local news (e.g. severe weather). Moreover, when stations return to network 
programming from commercial breaks, the station's logo is displayed in the first few seconds before switching to 
the network's logo. 
Another FCC regulation, the Prime Time Access Rule, restricted the number of hours of network programming 
that could be broadcast on the local affiliate stations. This was done to encourage the development of locally 
produced programs and to give local residents access to broadcast time. More often, the result included a 
substantial amount of syndicated programming, usually consisting of old movies, independently produced and 
syndicated shows, and reruns of network programs. Occasionally, these shows were presented by a local host, 
especially in programs that showed cartoons and short comedies intended for children. See List of local children's 
television series (United States). 

 
 

12. Business networking 
Business networking is a marketing method by which business opportunities are created through networks of 
like-minded business people. There are several prominent business networking organizations that create models 
of networking activity that, when followed, allow the business person to build new business relationship and 
generate business opportunities at the same time. 
Many business people contend business networking is a more cost-effective method of generating new business 
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than advertising or public relations efforts. This is because business networking is a low-cost activity that involves 
more personal commitment than company money. 
As an example, a business network may agree to meet weekly or monthly with the purpose of exchanging 
business leads and referrals with fellow members. To complement this activity, members often meet outside this 
circle, on their own time, and build their own "one-to-one" relationship with the fellow member.  
Business networking can be conducted in a local business community, or on a more larger scale via the Internet. 
Business networking websites have grown over recent years due to the Internet's ability to connect people from 
all over the world. 
Business networking can have a meaning also in the ICT domain, i.e. the provision of operating support to 
companies / organizations, and related value chains / value networks. 

It refers to an activity coordination with a wider scope and a simpler implementation than pre-organized 
workflows or web-based impromptu searches for transaction counterparts (workflow is useful to coordinate 
activities, but it is complicated by the use of s.c. "patterns" to deviate the flow of work from a pure sequence, in 
order to compensate its intrinsic "linearity"; impromptu searches for transaction counterparts on the web are 
useful as well, but only for non strategic supplies; both are complicated by a plethora of interfaces -- SOA / XML / 
web services -- needed among different organizations and even between different IT applications within the same 
organization). 

Online business networking 
Businesses are increasingly using business social networks like Business Book[[1]]or professional business 
networking tools like Boardex as a means of growing their circle of business contacts and promoting themselves 
online. Since businesses are expanding globally, social networks make it easier to keep in touch with other 
contacts around the world. Specific cross-border e-commerce platforms and business partnering networks now 
make globalization accessible also for small and medium sized companies. 

Face-to-face business networking 
Professionals who wish to leverage their presentation skills with the urgency of physically being present attend 
general and exclusive events. Many professionals tend to prefer face-to-face networking over online based 
networking because the potential for higher quality relationships are possible. Many individuals also prefer face-
to-face because people tend to prefer actually knowing and meeting who they intend to do business with. 

General business networking 
Before online networking, there was and has always been, networking face-to-face. "Schmoozing" or "rubbing 
elbows" are expressions used among business professionals for introducing and meeting one another, and 
establishing rapport. 

Networked Businesses 
With networking developing many businesses now have this as a core part of their strategy, those that have 
developed a strong network of connections suppliers and companies can be seen as "Networked Businesses" and 
will tend to source the business and their suppliers through the network of relationships that they have in place. 
Networked businesses tend to be Open, Random and Supportive - ORS whereas those relying on hierarchical, 
traditional managed approaches are Closed Selective and Controlling - CSC. 

Business networking in the ICT domain 
Companies / organizations - and related value chains / value networks - need some sort of IT support. Traditionally, 
it is provided by software applications, software packages /suites, ERPs and/or workflows; presently, also by 
different types of web-based innovations. 
A truly "ICT" business networking approach rethinks - and rebuilds - the operating support from scratch, around 
two key business features: information contributions, to be provided by the activities involved (whether they are 
performed by human beings, automated tools or jointly by the two, in a coordinated way); (automated) 
information exchanges, to be provided by the TLC network. 
Information contributions and exchanges, in turn, need to be supported by data storage (plain or redundant, with 
or without automated recovery to grant service continuity) and access security (signature, encryption, 
authentication, decryption), which both can be provided either as add-ons or as built-in features. 
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13. Dynamic network analysis 
Dynamic network analysis (DNA) is an emergent scientific field that brings together traditional social network 
analysis (SNA), link analysis (LA) and multi-agent systems (MAS) within network science and network theory. 
There are two aspects of this field. The first is the statistical analysis of DNA data. The second is the utilization of 
simulation to address issues of network dynamics. DNA networks vary from traditional social networks in that 
they are larger, dynamic, multi-mode, multi-plex networks, and may contain varying levels of uncertainty. 
DNA statistical tools are generally optimized for large-scale networks and admit the analysis of multiple networks 
simultaneously in which, there are multiple types of nodes (multi-node) and multiple types of links (multi-plex). In 
contrast, SNA statistical tools focus on single or at most two mode data and facilitate the analysis of only one type 
of link at a time. 
DNA statistical tools tend to provide more measures to the user, because they have measures that use data drawn 
from multiple networks simultaneously. From a computer simulation perspective, nodes in DNA are like atoms in 
quantum theory, nodes can be, though need not be, treated as probabilistic. Whereas nodes in a traditional SNA 

model are static, nodes in a DNA 
model have the ability to learn. 
Properties change over time; 
nodes can adapt: A company's 
employees can learn new skills and 
increase their value to the 
network; Or, capture one terrorist 
and three more are forced to 
improvise. Change propagates 
from one node to the next and so 
on. DNA adds the element of a 
network's evolution and considers 
the circumstances under which 
change is likely to occur. 
 

 An example of a multi-entity, multi-network, dynamic network diagram 

Illustrative problems that people in the DNA area work on 
 Developing metrics and statistics to assess and identify change within and across networks.  
 Developing and validating simulations to study network change, evolution, adaptation, decay... See Computer 

simulation and organizational studies  
 Developing and validating formal models of network generation and evolution  
 Developing and testing theory of network change, evolution, adaptation, decay...  
 Developing techniques to visualize network change overall or at the node or group level  
 Developing statistical techniques to see whether differences observed over time in networks are due to 

simply different samples from a distribution of links and nodes or changes over time in the underlying 
distribution of links and nodes  

 Developing control processes for networks over time  
 Developing algorithms to change distributions of links in networks over time  
 Developing algorithms to track groups in networks over time.  
 Developing tools to extract or locate networks from various data sources such as texts.  
 Developing statistically valid measurements on networks over time.  
 Examining the robustness of network metrics under various types of missing data  
 Empirical studies of multi-mode multi-link multi-time period networks  
 Examining networks as probabilistic time-variant phenomena  
 Forecasting change in existing networks  
 Identifying trails through time given a sequence of networks.  
 Identifying changes in node criticality given a sequence of networks anything else related to multi-mode multi-

link multi-time period networks.  
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Further reading 
 Kathleen M. Carley, 2003, “Dynamic Network Analysis” in Dynamic Social Network Modeling and Analysis: 

Workshop Summary and Papers, Ronald Breiger, Kathleen Carley, and Philippa Pattison, (Eds.) Committee on 
Human Factors, National Research Council, National Research Council. Pp. 133–145, Washington, DC.  

 Kathleen M. Carley, 2002, “Smart Agents and Organizations of the Future” The Handbook of New Media. 
Edited by Leah Lievrouw and Sonia Livingstone, Ch. 12, pp. 206–220, Thousand Oaks, CA, Sage.  

 Kathleen M. Carley, Jana Diesner, Jeffrey Reminga, Maksim Tsvetovat, 2008, Toward an Interoperable 
Dynamic Network Analysis Toolkit, DSS Special Issue on Cyberinfrastructure for Homeland Security: Advances 
in Information Sharing, Data Mining, and Collaboration Systems. Decision Support Systems 43(4):1324-1347 
(article 20)  

 Terrill L. Frantz, Kathleen M. Carley. 2009, Toward A Confidence Estimate For The Most-Central-Actor Finding. 
Academy of Management Annual Conference, Chicago, IL, USA, 7-11 August. (Awarded the Sage 
Publications/RM Division Best Student Paper Award)  

See also 
 Network dynamics  
 Sequential dynamical system  
 Kathleen Carley  

 Network science  
 INSNA  

External links 
 Radcliffe Exploratory Seminar on Dynamic Networks  
 Center for Computational Analysis of Social and Organizational Systems (CASOS)  
 

 

14. Neural network 
 Simplified view of a feedforward artificial neural network 

Traditionally, the term neural network had been used to refer to a network 
or circuit of biological neurons[citation needed]. The modern usage of the term 
often refers to artificial neural networks, which are composed of artificial 
neurons or nodes. Thus the term has two distinct usages: 
1. Biological neural networks are made up of real biological neurons that 

are connected or functionally related in the peripheral nervous system 
or the central nervous system. In the field of neuroscience, they are 
often identified as groups of neurons that perform a specific 
physiological function in laboratory analysis.  

2. Artificial neural networks are made up of interconnecting artificial 
neurons (programming constructs that mimic the properties of 
biological neurons). Artificial neural networks may either be used to gain 
an understanding of biological neural networks, or for solving artificial 
intelligence problems without necessarily creating a model of a real 
biological system. The real, biological nervous system is highly complex 

and includes some features that may seem superfluous based on an understanding of artificial networks.  
This article focuses on the relationship between the two concepts; for detailed coverage of the two different 
concepts refer to the separate articles: Biological neural network and Artificial neural network. 

Overview 
In general a biological neural network is composed of a group or groups of chemically connected or functionally 
associated neurons. A single neuron may be connected to many other neurons and the total number of neurons 
and connections in a network may be extensive. Connections, called synapses, are usually formed from axons to 
dendrites, though dendrodendritic microcircuits[1] and other connections are possible. Apart from the electrical 
signaling, there are other forms of signaling that arise from neurotransmitter diffusion, which have an effect on 
electrical signaling. As such, neural networks are extremely complex. 
Artificial intelligence and cognitive modeling try to simulate some properties of neural networks. While similar in 
their techniques, the former has the aim of solving particular tasks, while the latter aims to build mathematical 
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models of biological neural systems. 
In the artificial intelligence field, artificial neural networks have been applied successfully to speech recognition, 
image analysis and adaptive control, in order to construct software agents (in computer and video games) or 
autonomous robots. Most of the currently employed artificial neural networks for artificial intelligence are based 
on statistical estimation, optimization and control theory. 
The cognitive modelling field involves the physical or mathematical modeling of the behaviour of neural systems; 
ranging from the individual neural level (e.g. modelling the spike response curves of neurons to a stimulus), 
through the neural cluster level (e.g. modelling the release and effects of dopamine in the basal ganglia) to the 
complete organism (e.g. behavioural modelling of the organism's response to stimuli). Artificial intelligence, 
cognitive modelling, and neural networks are information processing paradigms inspired by the way biological 
neural systems process data. 

History of the neural network analogy 

The concept of neural networks started in the late-1800s as an effort to describe how the human mind performed. 
These ideas started being applied to computational models with Turing's B-type machines and the perceptron. 
In early 1950s Friedrich Hayek was one of the first to posit the idea of spontaneous order[citation needed] in the brain 
arising out of decentralized networks of simple units (neurons). In the late 1940s, Donald Hebb made one of the 
first hypotheses for a mechanism of neural plasticity (i.e. learning), Hebbian learning. Hebbian learning is 
considered to be a 'typical' unsupervised learning rule and it (and variants of it) was an early model for long term 
potentiation. 

The perceptron is essentially a linear classifier for classifying data specified by parameters 

and an output function f = w'x + b. Its parameters are adapted with an ad-hoc rule similar to 
stochastic steepest gradient descent. Because the inner product is a linear operator in the input space, the 
Perceptron can only perfectly classify a set of data for which different classes are linearly separable in the input 
space, while it often fails completely for non-separable data. While the development of the algorithm initially 
generated some enthusiasm, partly because of its apparent relation to biological mechanisms, the later discovery 
of this inadequacy caused such models to be abandoned until the introduction of non-linear models into the field. 

The cognitron (1975) was an early multilayered neural network with a training algorithm. The actual structure of 
the network and the methods used to set the interconnection weights change from one neural strategy to 
another, each with its advantages and disadvantages. Networks can propagate information in one direction only, 
or they can bounce back and forth until self-activation at a node occurs and the network settles on a final state. 
The ability for bi-directional flow of inputs between neurons/nodes was produced with the Hopfield's network 
(1982), and specialization of these node layers for specific purposes was introduced through the first hybrid 
network. 
The parallel distributed processing of the mid-1980s became popular under the name connectionism. 

The rediscovery of the backpropagation algorithm was probably the main reason behind the repopularisation of 
neural networks after the publication of "Learning Internal Representations by Error Propagation" in 1986 
(Though backpropagation itself dates from 1974). 

The original network utilised multiple layers of weight-sum units of the type f = g(w'x + b), where g was a sigmoid 
function or logistic function such as used in logistic regression. Training was done by a form of stochastic steepest 
gradient descent. The employment of the chain rule of differentiation in deriving the appropriate parameter 
updates results in an algorithm that seems to 'backpropagate errors', hence the nomenclature. However it is 
essentially a form of gradient descent. Determining the optimal parameters in a model of this type is not trivial, 
and steepest gradient descent methods cannot be relied upon to give the solution without a good starting point. 
In recent times, networks with the same architecture as the backpropagation network are referred to as Multi-
Layer Perceptrons. This name does not impose any limitations on the type of algorithm used for learning. 
The backpropagation network generated much enthusiasm at the time and there was much controversy about 
whether such learning could be implemented in the brain or not, partly because a mechanism for reverse 
signalling was not obvious at the time, but most importantly because there was no plausible source for the 
'teaching' or 'target' signal. 

The brain, neural networks and computers 
Neural networks, as used in artificial intelligence, have traditionally been viewed as simplified models of neural 
processing in the brain, even though the relation between this model and brain biological architecture is 
debated[citation needed]. 
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A subject of current research in theoretical neuroscience is the question surrounding the degree of complexity and 
the properties that individual neural elements should have to reproduce something resembling animal 
intelligence. 
Historically, computers evolved from the von Neumann architecture, which is based on sequential processing and 
execution of explicit instructions. On the other hand, the origins of neural networks are based on efforts to model 
information processing in biological systems, which may rely largely on parallel processing as well as implicit 
instructions based on recognition of patterns of 'sensory' input from external sources. In other words, at its very 
heart a neural network is a complex statistical processor (as opposed to being tasked to sequentially process and 
execute). 

Neural networks and artificial intelligence 
A neural network (NN). in the case of artificial neurons called artificial neural network (ANN) or simulated neural 
network (SNN), is an interconnected group of natural or artificial neurons that uses a mathematical or 
computational model for information processing based on a connectionistic approach to computation. In most 
cases an ANN is an adaptive system that changes its structure based on external or internal information that flows 
through the network. 

In more practical terms neural networks are non-linear statistical data modeling or decision making tools. They can 
be used to model complex relationships between inputs and outputs or to find patterns in data. 

However, the paradigm of neural networks - i.e., implicit, and not explicit  learning is stressed - seems more to 
correspond to some kind of natural intelligence than to the traditional Artificial Intelligence, which would stress, 
instead, rule-based learning. 

Background 
An artificial neural network involves a network of simple processing elements (artificial neurons) which can exhibit 
complex global behavior, determined by the connections between the processing elements and element 
parameters. Artificial neurons were first proposed in 1943 by Warren McCulloch, a neurophysiologist, and Walter 
Pitts, an MIT logician.[1] One classical type of artificial neural network is the recurrent Hopfield net. 
In a neural network model simple nodes, which can be called variously "neurons", "neurodes", "Processing 
Elements" (PE) or "units", are connected together to form a network of nodes — hence the term "neural 
network". While a neural network does not have to be adaptive per se, its practical use comes with algorithms 
designed to alter the strength (weights) of the connections in the network to produce a desired signal flow. 
In modern software implementations of artificial neural networks the approach inspired by biology has more or 
less been abandoned for a more practical approach based on statistics and signal processing. In some of these 
systems, neural networks, or parts of neural networks (such as artificial neurons), are used as components in 
larger systems that combine both adaptive and non-adaptive elements. 

The concept of a neural network appears to have first been proposed by Alan Turing in his 1948 paper "Intelligent 
Machinery". 

Applications of natural and of artificial neural networks 

The utility of artificial neural network models lies in the fact that they can be used to infer a function from 
observations and also to use it. This is particularly useful in applications where the complexity of the data or task 
makes the design of such a function by hand impractical. 
Real life applications  

The tasks to which artificial neural networks are applied tend to fall within the following broad categories: 

 Function approximation, or regression analysis, including time series prediction and modelling.  

 Classification, including pattern and sequence recognition, novelty detection and sequential decision making.  

 Data processing, including filtering, clustering, blind signal separation and compression.  

Application areas of ANNs include system identification and control (vehicle control, process control), game-
playing and decision making (backgammon, chess, racing), pattern recognition (radar systems, face identification, 
object recognition, etc.), sequence recognition (gesture, speech, handwritten text recognition), medical 
diagnosis, financial applications, data mining (or knowledge discovery in databases, "KDD"), visualization and e-
mail spam filtering. 

 Moreover, some brain diseases, e.g. Alzheimer, are apparently, and essentially, diseases of the brain's natural 
NN by damaging necessary prerequisites for the functioning of the mutual interconnections between neurons 
and/or glia.  
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Neural network software 
Neural network software is used to simulate, research, develop and apply artificial neural networks, biological 
neural networks and in some cases a wider array of adaptive systems. 

Learning paradigms 
There are three major learning paradigms, each corresponding to a particular abstract learning task. These are 
supervised learning, unsupervised learning and reinforcement learning. Usually any given type of network 
architecture can be employed in any of those tasks. 
- Supervised learning  

In supervised learning, we are given a set of example pairs and the aim is to find a 
function f in the allowed class of functions that matches the examples. In other words, we wish to infer how the 
mapping implied by the data and the cost function is related to the mismatch between our mapping and the 
data. 

- Unsupervised learning  
In unsupervised learning we are given some data x, and a cost function which is to be minimized which can be 
any function of x and the network's output, f. The cost function is determined by the task formulation. Most 
applications fall within the domain of estimation problems such as statistical modeling, compression, filtering, 
blind source separation and clustering. 

- Reinforcement learning  
In reinforcement learning, data x is usually not given, but generated by an agent's interactions with the 
environment. At each point in time t, the agent performs an action yt and the environment generates an 
observation xt and an instantaneous cost ct, according to some (usually unknown) dynamics. The aim is to 
discover a policy for selecting actions that minimizes some measure of a long-term cost, i.e. the expected 
cumulative cost. The environment's dynamics and the long-term cost for each policy are usually unknown, but 
can be estimated. ANNs are frequently used in reinforcement learning as part of the overall algorithm. Tasks 
that fall within the paradigm of reinforcement learning are control problems, games and other sequential 
decision making tasks. 

Learning algorithms 
There are many algorithms for training neural networks; most of them can be viewed as a straightforward 
application of optimization theory and statistical estimation. They include: Back propagation by gradient descent, 
Rprop, BFGS, CG etc. 
Evolutionary computation methods, simulated annealing, expectation maximization and non-parametric methods 
are among other commonly used methods for training neural networks. See also machine learning. 
Recent developments in this field also saw the use of particle swarm optimization and other swarm intelligence 
techniques used in the training of neural networks. 

Neural networks and neuroscience 
Theoretical and computational neuroscience is the field concerned with the theoretical analysis and 
computational modeling of biological neural systems. Since neural systems are intimately related to cognitive 
processes and behaviour, the field is closely related to cognitive and behavioural modeling. 

The aim of the field is to create models of biological neural systems in order to understand how biological systems 
work. To gain this understanding, neuroscientists strive to make a link between observed biological processes 
(data), biologically plausible mechanisms for neural processing and learning (biological neural network models) 
and theory (statistical learning theory and information theory). 

Types of models 
Many models are used in the field, each defined at a different level of abstraction and trying to model different 
aspects of neural systems. They range from models of the short-term behaviour of individual neurons, through 
models of how the dynamics of neural circuitry arise from interactions between individual neurons, to models of 
how behaviour can arise from abstract neural modules that represent complete subsystems. These include models 
of the long-term and short-term plasticity of neural systems and its relation to learning and memory, from the 
individual neuron to the system level. 

Current research 
While initially research had been concerned mostly with the electrical characteristics of neurons, a particularly 
important part of the investigation in recent years has been the exploration of the role of neuromodulators such 
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as dopamine, acetylcholine, and serotonin on behaviour and learning. 
Biophysical models, such as BCM theory, have been important in understanding mechanisms for synaptic 
plasticity, and have had applications in both computer science and neuroscience. Research is ongoing in 
understanding the computational algorithms used in the brain, with some recent biological evidence for radial 
basis networks and neural backpropagation as mechanisms for processing data. 

Criticism 
A common criticism of neural networks, particularly in robotics, is that they require a large diversity of training for 
real-world operation. Dean Pomerleau, in his research presented in the paper "Knowledge-based Training of 
Artificial Neural Networks for Autonomous Robot Driving," uses a neural network to train a robotic vehicle to 
drive on multiple types of roads (single lane, multi-lane, dirt, etc.). A large amount of his research is devoted to (1) 
extrapolating multiple training scenarios from a single training experience, and (2) preserving past training 
diversity so that the system does not become overtrained (if, for example, it is presented with a series of right 
turns – it should not learn to always turn right). These issues are common in neural networks that must decide 
from amongst a wide variety of responses. 

A. K. Dewdney, a former Scientific American columnist, wrote in 1997, "Although neural nets do solve a few toy 
problems, their powers of computation are so limited that I am surprised anyone takes them seriously as a general 
problem-solving tool." (Dewdney, p. 82) 

Arguments for Dewdney's position are that to implement large and effective software neural networks, much 
processing and storage resources need to be committed. While the brain has hardware tailored to the task of 
processing signals through a graph of neurons, simulating even a most simplified form on Von Neumann 
technology may compel a NN designer to fill many millions of database rows for its connections - which can lead to 
abusive RAM and HD necessities. Furthermore, the designer of NN systems will often need to simulate the 
transmission of signals through many of these connections and their associated neurons - which must often be 
matched with incredible amounts of CPU processing power and time. While neural networks often yield effective 
programs, they too often do so at the cost of time and money efficiency. 
Arguments against Dewdney's position are that neural nets have been successfully used to solve many complex 
and diverse tasks, ranging from autonomously flying aircraft[2] to detecting credit card fraud[3]. 
Technology writer Roger Bridgman commented on Dewdney's statements about neural nets: 

Neural networks, for instance, are in the dock not only because they have been hyped to high heaven, (what 
hasn't?) but also because you could create a successful net without understanding how it worked: the bunch of 
numbers that captures its behaviour would in all probability be "an opaque, unreadable table...valueless as a 
scientific resource". In spite of his emphatic declaration that science is not technology, Dewdney seems here to 
pillory neural nets as bad science when most of those devising them are just trying to be good engineers. An 
unreadable table that a useful machine could read would still be well worth having.[2] 

Some other criticisms came from believers of hybrid models (combining neural networks and symbolic 
approaches). They advocate the intermix of these two approaches and believe that hybrid models can better 
capture the mechanisms of the human mind (Sun and Bookman 1994). 

See also 
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 Biologically inspired computing  
 Cerebellar Model Articulation 

Controller  
 Cognitive architecture  
 Cognitive science  
 Cultured neuronal networks  
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 Recurrent neural networks  
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15. Artificial neural network 
An artificial neural network (ANN), usually called "neural network" (NN), is a mathematical model or 
computational model that tries to simulate the structure and/or functional aspects of biological neural networks. 
It consists of an interconnected group of artificial neurons and processes information using a connectionist 
approach to computation. In most cases an ANN is an adaptive system that changes its structure based on 
external or internal information that flows through the network during the learning phase. Neural networks are 
non-linear statistical data modeling tools. They can be used to model complex relationships between inputs and 

outputs or to find patterns in data. 

 A neural network is an interconnected group of nodes, akin to 
the vast network of neurons in the human brain. 

Background 
There is no precise agreed-upon definition among researchers as 
to what a neural network is, but most would agree that it 
involves a network of simple processing elements (neurons), 
which can exhibit complex global behavior, determined by the 
connections between the processing elements and element 
parameters. The original inspiration for the technique came from 
examination of the central nervous system and the neurons (and 
their axons, dendrites and synapses) which constitute one of its 
most significant information processing elements (see 
neuroscience). In a neural network model, simple nodes, called 
variously "neurons", "neurodes", "PEs" ("processing elements") 

or "units", are connected together to form a network of nodes — hence the term "neural network". While a 
neural network does not have to be adaptive per se, its practical use comes with algorithms designed to alter the 
strength (weights) of the connections in the network to produce a desired signal flow. 
These networks are also similar to the biological neural networks in the sense that functions are performed 
collectively and in parallel by the units, rather than there being a clear delineation of subtasks to which various 
units are assigned (see also connectionism). Currently, the term Artificial Neural Network (ANN) tends to refer 
mostly to neural network models employed in statistics, cognitive psychology and artificial intelligence. Neural 
network models designed with emulation of the central nervous system (CNS) in mind are a subject of theoretical 
neuroscience (computational neuroscience). 
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In modern software implementations of artificial neural networks the approach inspired by biology has for the 
most part been abandoned for a more practical approach based on statistics and signal processing. In some of 
these systems, neural networks or parts of neural networks (such as artificial neurons) are used as components in 
larger systems that combine both adaptive and non-adaptive elements. While the more general approach of such 
adaptive systems is more suitable for real-world problem solving, it has far less to do with the traditional artificial 
intelligence connectionist models. What they do have in common, however, is the principle of non-linear, 
distributed, parallel and local processing and adaptation. 

Models 
Neural network models in artificial intelligence are usually referred to as artificial neural networks (ANNs); these 

are essentially simple mathematical models defining a function . Each type of ANN model 
corresponds to a class of such functions. 

The network in artificial neural network 
The word network in the term 'artificial neural network' arises because the function f(x) is defined as a 
composition of other functions gi(x), which can further be defined as a composition of other functions. This can be 
conveniently represented as a network structure, with arrows depicting the dependencies between variables. A 

widely used type of composition is the nonlinear weighted sum, where , where 
K (commonly referred to as the activation function[1]) is some predefined function, such as the hyperbolic tangent. 
It will be convenient for the following to refer to a collection of functions gi as simply a vector 

. 
 ANN dependency graph 

This figure depicts such a decomposition of f, with dependencies between variables 
indicated by arrows. These can be interpreted in two ways. 
The first view is the functional view: the input x is transformed into a 3-dimensional 
vector h, which is then transformed into a 2-dimensional vector g, which is finally 
transformed into f. This view is most commonly encountered in the context of 
optimization. 

The second view is the probabilistic view: the random variable F = f(G) depends upon the random variable G = g(H), 
which depends upon H = h(X), which depends upon the random variable X. This view is most commonly 
encountered in the context of graphical models. 
The two views are largely equivalent. In either case, for this particular network architecture, the components of 
individual layers are independent of each other (e.g., the components of g are independent of each other given 
their input h). This naturally enables a degree of parallelism in the implementation. 

 Recurrent ANN dependency graph 
Networks such as the previous one are commonly called feedforward, because their graph 
is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such 
networks are commonly depicted in the manner shown at the top of the figure, where f is 
shown as being dependent upon itself. However, there is an implied temporal dependence 
which is not shown. 

Learning 
What has attracted the most interest in neural networks is the possibility of learning. Given 
a specific task to solve, and a class of functions F, learning means using a set of 

observations to find which solves the task in some optimal sense. 

This entails defining a cost function such that, for the optimal solution f * , 

(i.e., no solution has a cost less than the cost of the optimal solution). 
The cost function C is an important concept in learning, as it is a measure of how far away a particular solution is 
from an optimal solution to the problem to be solved. Learning algorithms search through the solution space to 
find a function that has the smallest possible cost. 

For applications where the solution is dependent on some data, the cost must necessarily be a function of the 
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observations, otherwise we would not be modelling anything related to the data. It is frequently defined as a 
statistic to which only approximations can be made. As a simple example consider the problem of finding the 

model f which minimizes , for data pairs (x,y) drawn from some distribution . In 
practical situations we would only have N samples from and thus, for the above example, we would only 

minimize . Thus, the cost is minimized over a sample of the data rather than the 
entire data set. 

When some form of online machine learning must be used, where the cost is partially minimized as 
each new example is seen. While online machine learning is often used when is fixed, it is most useful in the 
case where the distribution changes slowly over time. In neural network methods, some form of online machine 
learning is frequently used for finite datasets. 

Choosing a cost function 
While it is possible to define some arbitrary, ad hoc cost function, frequently a particular cost will be used, either 
because it has desirable properties (such as convexity) or because it arises naturally from a particular formulation 
of the problem (e.g., in a probabilistic formulation the posterior probability of the model can be used as an inverse 
cost). Ultimately, the cost function will depend on the task we wish to perform. The three main categories of 
learning tasks are overviewed below. 

Learning paradigms 
There are three major learning paradigms, each corresponding to a particular abstract learning task. These are 
supervised learning, unsupervised learning and reinforcement learning. Usually any given type of network 
architecture can be employed in any of those tasks. 

Supervised learning 

In supervised learning, we are given a set of example pairs and the aim is to find a 

function in the allowed class of functions that matches the examples. In other words, we wish to 
infer the mapping implied by the data; the cost function is related to the mismatch between our mapping and the 
data and it implicitly contains prior knowledge about the problem domain. 
A commonly used cost is the mean-squared error which tries to minimize the average squared error between the 
network's output, f(x), and the target value y over all the example pairs. When one tries to minimize this cost 
using gradient descent for the class of neural networks called Multi-Layer Perceptrons, one obtains the common 
and well-known backpropagation algorithm for training neural networks. 
Tasks that fall within the paradigm of supervised learning are pattern recognition (also known as classification) 
and regression (also known as function approximation). The supervised learning paradigm is also applicable to 
sequential data (e.g., for speech and gesture recognition). This can be thought of as learning with a "teacher," in 
the form of a function that provides continuous feedback on the quality of solutions obtained thus far. 

Unsupervised learning 
In unsupervised learning we are given some data x and the cost function to be minimized, that can be any function 
of the data x and the network's output, f. 
The cost function is dependent on the task (what we are trying to model) and our a priori assumptions (the 
implicit properties of our model, its parameters and the observed variables). 

As a trivial example, consider the model f(x) = a, where a is a constant and the cost C = E[(x − f(x))2]. Minimizing 
this cost will give us a value of a that is equal to the mean of the data. The cost function can be much more 
complicated. Its form depends on the application: for example, in compression it could be related to the mutual 
information between x and y, whereas in statistical modelling, it could be related to the posterior probability of 
the model given the data. (Note that in both of those examples those quantities would be maximized rather than 
minimized). 
Tasks that fall within the paradigm of unsupervised learning are in general estimation problems; the applications 
include clustering, the estimation of statistical distributions, compression and filtering. 

Reinforcement learning 
In reinforcement learning, data x are usually not given, but generated by an agent's interactions with the 
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environment. At each point in time t, the agent performs an action yt and the environment generates an 
observation xt and an instantaneous cost ct, according to some (usually unknown) dynamics. The aim is to discover 
a policy for selecting actions that minimizes some measure of a long-term cost; i.e., the expected cumulative cost. 
The environment's dynamics and the long-term cost for each policy are usually unknown, but can be estimated. 

More formally, the environment is modeled as a Markov decision process (MDP) with states 

and actions with the following probability distributions: the instantaneous cost distribution 
P(ct | st), the observation distribution P(xt | st) and the transition P(st + 1 | st,at), while a policy is defined as 
conditional distribution over actions given the observations. Taken together, the two define a Markov chain (MC). 
The aim is to discover the policy that minimizes the cost; i.e., the MC for which the cost is minimal. 

ANNs are frequently used in reinforcement learning as part of the overall algorithm. 
Tasks that fall within the paradigm of reinforcement learning are control problems, games and other sequential 
decision making tasks. 

Learning algorithms 
Training a neural network model essentially means selecting one model from the set of allowed models (or, in a 
Bayesian framework, determining a distribution over the set of allowed models) that minimizes the cost criterion. 
There are numerous algorithms available for training neural network models; most of them can be viewed as a 
straightforward application of optimization theory and statistical estimation. 
Most of the algorithms used in training artificial neural networks employ some form of gradient descent. This is 
done by simply taking the derivative of the cost function with respect to the network parameters and then 
changing those parameters in a gradient-related direction. 
Evolutionary methods, simulated annealing, expectation-maximization and non-parametric methods are some 
commonly used methods for training neural networks. See also machine learning. 

Temporal perceptual learning relies on finding temporal relationships in sensory signal streams. In an 
environment, statistically salient temporal correlations can be found by monitoring the arrival times of sensory 
signals. This is done by the perceptual network. 

Employing artificial neural networks 
Perhaps the greatest advantage of ANNs is their ability to be used as an arbitrary function approximation 
mechanism which 'learns' from observed data. However, using them is not so straightforward and a relatively 
good understanding of the underlying theory is essential. 

 Choice of model: This will depend on the data representation and the application. Overly complex models 
tend to lead to problems with learning.  

 Learning algorithm: There are numerous tradeoffs between learning algorithms. Almost any algorithm will 
work well with the correct hyperparameters for training on a particular fixed dataset. However selecting and 
tuning an algorithm for training on unseen data requires a significant amount of experimentation.  

 Robustness: If the model, cost function and learning algorithm are selected appropriately the resulting ANN 
can be extremely robust.  

With the correct implementation ANNs can be used naturally in online learning and large dataset applications. 
Their simple implementation and the existence of mostly local dependencies exhibited in the structure allows for 
fast, parallel implementations in hardware. 

Applications 
The utility of artificial neural network models lies in the fact that they can be used to infer a function from 
observations. This is particularly useful in applications where the complexity of the data or task makes the design 
of such a function by hand impractical. 

Real life applications 
The tasks to which artificial neural networks are applied tend to fall within the following broad categories: 

 Function approximation, or regression analysis, including time series prediction, fitness approximation and 
modeling.  

 Classification, including pattern and sequence recognition, novelty detection and sequential decision making.  

 Data processing, including filtering, clustering, blind source separation and compression.  

 Robotics, including directing manipulators, Computer numerical control.  
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Application areas include system identification and control (vehicle control, process control), quantum 
chemistry,[2] game-playing and decision making (backgammon, chess, racing), pattern recognition (radar systems, 
face identification, object recognition and more), sequence recognition (gesture, speech, handwritten text 
recognition), medical diagnosis, financial applications (automated trading systems), data mining (or knowledge 
discovery in databases, "KDD"), visualization and e-mail spam filtering. 

Neural network software 
Neural network software is used to simulate, research, develop and apply artificial neural networks, biological 
neural networks and in some cases a wider array of adaptive systems. 

Types of neural networks 

Feedforward neural network 
The feedforward neural network was the first and arguably simplest type of artificial neural network devised. In 
this network, the information moves in only one direction, forward, from the input nodes, through the hidden 
nodes (if any) and to the output nodes. There are no cycles or loops in the network. 

Radial basis function (RBF) network 

Radial Basis Functions are powerful techniques for interpolation in multidimensional space. A RBF is a function 
which has built into a distance criterion with respect to a center. Radial basis functions have been applied in the 
area of neural networks where they may be used as a replacement for the sigmoidal hidden layer transfer 
characteristic in Multi-Layer Perceptrons. RBF networks have two layers of processing: In the first, input is mapped 
onto each RBF in the 'hidden' layer. The RBF chosen is usually a Gaussian. In regression problems the output layer 
is then a linear combination of hidden layer values representing mean predicted output. The interpretation of this 
output layer value is the same as a regression model in statistics. In classification problems the output layer is 
typically a sigmoid function of a linear combination of hidden layer values, representing a posterior probability. 
Performance in both cases is often improved by shrinkage techniques, known as ridge regression in classical 
statistics and known to correspond to a prior belief in small parameter values (and therefore smooth output 
functions) in a Bayesian framework. 
RBF networks have the advantage of not suffering from local minima in the same way as Multi-Layer Perceptrons. 
This is because the only parameters that are adjusted in the learning process are the linear mapping from hidden 
layer to output layer. Linearity ensures that the error surface is quadratic and therefore has a single easily found 
minimum. In regression problems this can be found in one matrix operation. In classification problems the fixed 
non-linearity introduced by the sigmoid output function is most efficiently dealt with using iteratively re-weighted 
least squares. 
RBF networks have the disadvantage of requiring good coverage of the input space by radial basis functions. RBF 
centres are determined with reference to the distribution of the input data, but without reference to the 
prediction task. As a result, representational resources may be wasted on areas of the input space that are 
irrelevant to the learning task. A common solution is to associate each data point with its own centre, although 
this can make the linear system to be solved in the final layer rather large, and requires shrinkage techniques to 
avoid overfitting. 

Associating each input datum with an RBF leads naturally to kernel methods such as Support Vector Machines and 
Gaussian Processes (the RBF is the kernel function). All three approaches use a non-linear kernel function to 
project the input data into a space where the learning problem can be solved using a linear model. Like Gaussian 
Processes, and unlike SVMs, RBF networks are typically trained in a Maximum Likelihood framework by 
maximizing the probability (minimizing the error) of the data under the model. SVMs take a different approach to 
avoiding overfitting by maximizing instead a margin. RBF networks are outperformed in most classification 
applications by SVMs. In regression applications they can be competitive when the dimensionality of the input 
space is relatively small. 

Kohonen self-organizing network 
The self-organizing map (SOM) invented by Teuvo Kohonen performs a form of unsupervised learning. A set of 
artificial neurons learn to map points in an input space to coordinates in an output space. The input space can have 
different dimensions and topology from the output space, and the SOM will attempt to preserve these. 

Recurrent network 
Contrary to feedforward networks, recurrent neural networks (RNs) are models with bi-directional data flow. 
While a feedforward network propagates data linearly from input to output, RNs also propagate data from later 
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processing stages to earlier stages. 

Simple recurrent network 
A simple recurrent network (SRN) is a variation on the Multi-Layer Perceptron, sometimes called an "Elman 
network" due to its invention by Jeff Elman. A three-layer network is used, with the addition of a set of "context 
units" in the input layer. There are connections from the middle (hidden) layer to these context units fixed with a 
weight of one. At each time step, the input is propagated in a standard feed-forward fashion, and then a learning 
rule (usually back-propagation) is applied. The fixed back connections result in the context units always 
maintaining a copy of the previous values of the hidden units (since they propagate over the connections before 
the learning rule is applied). Thus the network can maintain a sort of state, allowing it to perform such tasks as 
sequence-prediction that are beyond the power of a standard Multi-Layer Perceptron. 

In a fully recurrent network, every neuron receives inputs from every other neuron in the network. These networks 
are not arranged in layers. Usually only a subset of the neurons receive external inputs in addition to the inputs 
from all the other neurons, and another disjunct subset of neurons report their output externally as well as 
sending it to all the neurons. These distinctive inputs and outputs perform the function of the input and output 
layers of a feed-forward or simple recurrent network, and also join all the other neurons in the recurrent 
processing. 

Hopfield network 
The Hopfield network is a recurrent neural network in which all connections are symmetric. Invented by John 
Hopfield in 1982, this network guarantees that its dynamics will converge. If the connections are trained using 
Hebbian learning then the Hopfield network can perform as robust content-addressable (or associative) memory, 
resistant to connection alteration. 

Echo state network 
The echo state network (ESN) is a recurrent neural network with a sparsely connected random hidden layer. The 
weights of output neurons are the only part of the network that can change and be learned. ESN are good to 
(re)produce temporal patterns. 

Long short term memory network 
The Long short term memory is an artificial neural net structure that unlike traditional RNNs doesn't have the 
problem of vanishing gradients. It can therefore use long delays and can handle signals that have a mix of low and 
high frequency components. 

Stochastic neural networks 
A stochastic neural network differs from a typical neural network because it introduces random variations into the 
network. In a probabilistic view of neural networks, such random variations can be viewed as a form of statistical 
sampling, such as Monte Carlo sampling. 

Boltzmann machine 
The Boltzmann machine can be thought of as a noisy Hopfield network. Invented by Geoff Hinton and Terry 
Sejnowski in 1985, the Boltzmann machine is important because it is one of the first neural networks to 
demonstrate learning of latent variables (hidden units). Boltzmann machine learning was at first slow to simulate, 
but the contrastive divergence algorithm of Geoff Hinton (circa 2000) allows models such as Boltzmann machines 
and products of experts to be trained much faster. 

Modular neural networks 
Biological studies have shown that the human brain functions not as a single massive network, but as a collection 
of small networks. This realization gave birth to the concept of modular neural networks, in which several small 
networks cooperate or compete to solve problems. 

Committee of machines 
A committee of machines (CoM) is a collection of different neural networks that together "vote" on a given 
example. This generally gives a much better result compared to other neural network models. Because neural 
networks suffer from local minima, starting with the same architecture and training but using different initial 
random weights often gives vastly different networks[citation needed]. A CoM tends to stabilize the result. 

The CoM is similar to the general machine learning bagging method, except that the necessary variety of machines 
in the committee is obtained by training from different random starting weights rather than training on different 
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randomly selected subsets of the training data. 

Associative neural network (ASNN) 
The ASNN is an extension of the committee of machines that goes beyond a simple/weighted average of different 
models. ASNN represents a combination of an ensemble of feed-forward neural networks and the k-nearest 
neighbor technique (kNN). It uses the correlation between ensemble responses as a measure of distance amid the 
analyzed cases for the kNN. This corrects the bias of the neural network ensemble. An associative neural network 
has a memory that can coincide with the training set. If new data become available, the network instantly 
improves its predictive ability and provides data approximation (self-learn the data) without a need to retrain the 
ensemble. Another important feature of ASNN is the possibility to interpret neural network results by analysis of 
correlations between data cases in the space of models. The method is demonstrated at www.vcclab.org, where 
you can either use it online or download it. 

Physical neural network 
A physical neural network includes electrically adjustable resistance material to simulate artificial synapses. 
Examples include the ADALINE neural network developed by Bernard Widrow in the 1960's and the memristor 
based neural network developed by Greg Snider of HP Labs in 2008. 

Other types of networks 
These special networks do not fit in any of the previous categories. 

Holographic associative memory 
Holographic associative memory represents a family of analog, correlation-based, associative, stimulus-response 
memories, where information is mapped onto the phase orientation of complex numbers operating. 

Instantaneously trained networks 
Instantaneously trained neural networks (ITNNs) were inspired by the phenomenon of short-term learning that 
seems to occur instantaneously. In these networks the weights of the hidden and the output layers are mapped 
directly from the training vector data. Ordinarily, they work on binary data, but versions for continuous data that 
require small additional processing are also available. 

Spiking neural networks 

Spiking neural networks (SNNs) are models which explicitly take into account the timing of inputs. The network 
input and output are usually represented as series of spikes (delta function or more complex shapes). SNNs have 
an advantage of being able to process information in the time domain (signals that vary over time). They are often 
implemented as recurrent networks. SNNs are also a form of pulse computer. 
Spiking neural networks with axonal conduction delays exhibit polychronization, and hence could have a very 
large memory capacity.[3] 

Networks of spiking neurons — and the temporal correlations of neural assemblies in such networks — have been 
used to model figure/ground separation and region linking in the visual system (see, for example, Reitboeck et 
al.in Haken and Stadler: Synergetics of the Brain. Berlin, 1989). 

In June 2005 IBM announced construction of a Blue Gene supercomputer dedicated to the simulation of a large 
recurrent spiking neural network.[4] 
Gerstner and Kistler have a freely available online textbook on Spiking Neuron Models. 

Dynamic neural networks 
Dynamic neural networks not only deal with nonlinear multivariate behaviour, but also include (learning of) time-
dependent behaviour such as various transient phenomena and delay effects. 

Cascading neural networks 
Cascade-Correlation is an architecture and supervised learning algorithm developed by Scott Fahlman and Christian 
Lebiere. Instead of just adjusting the weights in a network of fixed topology, Cascade-Correlation begins with a 
minimal network, then automatically trains and adds new hidden units one by one, creating a multi-layer structure. 
Once a new hidden unit has been added to the network, its input-side weights are frozen. This unit then becomes 
a permanent feature-detector in the network, available for producing outputs or for creating other, more complex 
feature detectors. The Cascade-Correlation architecture has several advantages over existing algorithms: it learns 
very quickly, the network determines its own size and topology, it retains the structures it has built even if the 
training set changes, and it requires no back-propagation of error signals through the connections of the network. 
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See: Cascade correlation algorithm. 

Neuro-fuzzy networks 
A neuro-fuzzy network is a fuzzy inference system in the body of an artificial neural network. Depending on the FIS 
type, there are several layers that simulate the processes involved in a fuzzy inference like fuzzification, inference, 
aggregation and defuzzification. Embedding an FIS in a general structure of an ANN has the benefit of using 
available ANN training methods to find the parameters of a fuzzy system. 

Compositional pattern-producing networks 
Compositional pattern-producing networks (CPPNs) are a variation of ANNs which differ in their set of activation 
functions and how they are applied. While typical ANNs often contain only sigmoid functions (and sometimes 
Gaussian functions), CPPNs can include both types of functions and many others. Furthermore, unlike typical 
ANNs, CPPNs are applied across the entire space of possible inputs so that they can represent a complete image. 
Since they are compositions of functions, CPPNs in effect encode images at infinite resolution and can be sampled 
for a particular display at whatever resolution is optimal. 

One-shot associative memory 
This type of network can add new patterns without the need for re-training. It is done by creating a specific 
memory structure, which assigns each new pattern to an orthogonal plane using adjacently connected hierarchical 
arrays [5]. The network offers real-time pattern recognition and high scalability, it however requires parallel 
processing and is thus best suited for platforms such as Wireless sensor networks (WSN), Grid computing, and 
GPGPUs. 

Theoretical properties 

Computational power 
The multi-layer perceptron (MLP) is a universal function approximator, as proven by the Cybenko theorem. 
However, the proof is not constructive regarding the number of neurons required or the settings of the weights. 
Work by Hava Siegelmann and Eduardo D. Sontag has provided a proof that a specific recurrent architecture with 
rational valued weights (as opposed to the commonly used floating point approximations) has the full power of a 
Universal Turing Machine[6] using a finite number of neurons and standard linear connections. They have further 
shown that the use of irrational values for weights results in a machine with super-Turing power. 

Capacity 
Artificial neural network models have a property called 'capacity', which roughly corresponds to their ability to 
model any given function. It is related to the amount of information that can be stored in the network and to the 
notion of complexity. 

Convergence 
Nothing can be said in general about convergence since it depends on a number of factors. Firstly, there may exist 
many local minima. This depends on the cost function and the model. Secondly, the optimization method used 
might not be guaranteed to converge when far away from a local minimum. Thirdly, for a very large amount of 
data or parameters, some methods become impractical. In general, it has been found that theoretical guarantees 
regarding convergence are an unreliable guide to practical application. 

Generalisation and statistics 
In applications where the goal is to create a system that 
generalises well in unseen examples, the problem of 
overtraining has emerged.  

 Confidence analysis of a neural network 

This arises in overcomplex or overspecified systems when the 
capacity of the network significantly exceeds the needed free 
parameters. There are two schools of thought for avoiding this 
problem: The first is to use cross-validation and similar 
techniques to check for the presence of overtraining and 
optimally select hyperparameters such as to minimize the 
generalisation error. The second is to use some form of 
regularisation. This is a concept that emerges naturally in a 



P. G. Gyarmati, dr.: Some words about networks.   I.part.. 
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 57 

probabilistic (Bayesian) framework, where the regularisation can be performed by selecting a larger prior 
probability over simpler models; but also in statistical learning theory, where the goal is to minimize over two 
quantities: the 'empirical risk' and the 'structural risk', which roughly correspond to the error over the training set 
and the predicted error in unseen data due to overfitting. 
Supervised neural networks that use an MSE cost function can use formal statistical methods to determine the 
confidence of the trained model. The MSE on a validation set can be used as an estimate for variance. This value 
can then be used to calculate the confidence interval of the output of the network, assuming a normal 
distribution. A confidence analysis made this way is statistically valid as long as the output probability distribution 
stays the same and the network is not modified. 

By assigning a softmax activation function on the output layer of the neural network (or a softmax component in 
a component-based neural network) for categorical target variables, the outputs can be interpreted as posterior 
probabilities. This is very useful in classification as it gives a certainty measure on classifications. 

The softmax activation function is:  

Dynamic properties 
Various techniques originally developed for studying disordered magnetic systems (i.e., the spin glass) have been 
successfully applied to simple neural network architectures, such as the Hopfield network. Influential work by E. 
Gardner and B. Derrida has revealed many interesting properties about perceptrons with real-valued synaptic 
weights, while later work by W. Krauth and M. Mezard has extended these principles to binary-valued synapses. 

Gallery 

 
 

A single-layer feedforward artificial neural network. 

Arrows originating from x2 are omitted for clarity. There are p inputs to this network and q outputs. There is no 
activation function (or equivalently, the activation function is g(x) = x). In this system, the value of the qth output, 

yq would be calculated as  
 

A two-layer feedforward artificialneural network. 
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See also 
 Adaptive resonance theory  
 Artificial life  
 Associative memory  
 Autoencoder  
 Biological neural network  
 Biologically inspired computing  
 Blue brain  
 Clinical decision support system  
 Connectionist expert system  
 Decision tree  
 Expert system  
 Fuzzy logic  
 Genetic algorithm  
 In Situ Adaptive Tabulation  
 Linear discriminant analysis  
 Logistic regression  
 Memristor  

 Multilayer perceptron  
 Nearest neighbor (pattern recognition)  
 Neural network  
 Neuroevolution, NeuroEvolution of Augmented 

Topologies (NEAT)  
 Neural network software  
 Ni1000 chip  
 Optical neural network  
 Particle swarm optimization  
 Perceptron  
 Predictive analytics  
 Principal components analysis  
 Regression analysis  
 Simulated annealing  
 Systolic array  
 Time delay neural network (TDNN)  

References 
1. ^ "The Machine Learning Dictionary". http://www.cse.unsw.edu.au/~billw/mldict.html#activnfn.  
2. ^ Roman M. Balabin, Ekaterina I. Lomakina (2009). "Neural network approach to quantum-chemistry data: 

Accurate prediction of density functional theory energies". J. Chem. Phys. 131 (7): 074104. 
doi:10.1063/1.3206326.  

3. ^ Izhikevich EM (February 2006). "Polychronization: computation with spikes". Neural Comput 18 (2): 245–82. 
doi:10.1162/089976606775093882. PMID               16378515         16378515.  

4. ^ "IBM Research | Press Resources | IBM and EPFL Join Forces to Uncover the Secrets of Cognitive 
Intelligence". 
http://domino.research.ibm.com/comm/pr.nsf/pages/news.20050606_CognitiveIntelligence.html. Retrieved 
2009-05-02.  

5. ^ B.B. Nasution, A.I. Khan, A Hierarchical Graph Neuron Scheme for Real-Time Pattern Recognition, IEEE 
Transactions on Neural Networks, vol 19(2), 212-229, Feb. 2008  

6. ^ Siegelmann, H.T.; Sontag, E.D. (1991). "Turing computability with neural nets". Appl. Math. Lett. 4 (6): 77–80. 
http://www.math.rutgers.edu/~sontag/FTP_DIR/aml-turing.pdf.  

External links 
 Performance comparison of neural network algorithms tested on UCI data sets  
 A close view to Artificial Neural Networks Algorithms  
 Neural Networks at the Open Directory Project  
 A Brief Introduction to Neural Networks (D. Kriesel) - Illustrated, bilingual manuscript about artificial neural 

networks; Topics so far: Perceptrons, Backpropagation, Radial Basis Functions, Recurrent Neural Networks, 
Self Organizing Maps, Hopfield Networks.  

 Neural Networks in Materials Science  
 A practical tutorial on Neural Networks  
 Applications of neural networks  

Further reading 
 Dedicated issue of Philosophical Transactions B on Neural Networks and Perception. Some articles are freely 

available.  

Bibliography 
 Bar-Yam, Yaneer (2003). Dynamics of Complex Systems, Chapter 2, 3.  
 Bar-Yam, Yaneer (2005). Making Things Work. Please see Chapter 3  
 Bhadeshia H. K. D. H. (1999). "Neural Networks in Materials Science". ISIJ International 39: 966–979. 

doi:10.2355/isijinternational.39.966.  
 Bhagat, P.M. (2005) Pattern Recognition in Industry, Elsevier. ISBN 0-08-044538-1  
 Bishop, C.M. (1995) Neural Networks for Pattern Recognition, Oxford: Oxford University Press. ISBN 0-19-



P. G. Gyarmati, dr.: Some words about networks.   I.part.. 
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 59 

853849-9 (hardback) or ISBN 0-19-853864-2 (paperback)  
 Cybenko, G.V. (1989). Approximation by Superpositions of a Sigmoidal function, Mathematics of Control, 

Signals and Systems, Vol. 2 pp. 303–314. electronic version  
 Duda, R.O., Hart, P.E., Stork, D.G. (2001) Pattern classification (2nd edition), Wiley, ISBN 0-471-05669-3  
 Egmont-Petersen, M., de Ridder, D., Handels, H. (2002). "Image processing with neural networks - a review". 

Pattern Recognition 35 (10): 2279–2301. doi:10.1016/S0031-3203(01)00178-9+.  
 Gurney, K. (1997) An Introduction to Neural Networks London: Routledge. ISBN 1-85728-673-1 (hardback) or 

ISBN 1-85728-503-4 (paperback)  
 Haykin, S. (1999) Neural Networks: A Comprehensive Foundation, Prentice Hall, ISBN 0-13-273350-1  
 Fahlman, S, Lebiere, C (1991). The Cascade-Correlation Learning Architecture, created for National Science 

Foundation, Contract Number EET-8716324, and Defense Advanced Research Projects Agency (DOD), ARPA 
Order No. 4976 under Contract F33615-87-C-1499. electronic version  

 Hertz, J., Palmer, R.G., Krogh. A.S. (1990) Introduction to the theory of neural computation, Perseus Books. 
ISBN 0-201-51560-1  

 Lawrence, J. (1994) Introduction to Neural Networks, California Scientific Software Press. ISBN 1-883157-00-5  
 Masters, T. (1994) Signal and Image Processing with Neural Networks, J. Wiley & Sons, Inc. ISBN 0-471-04963-8  
 Ness, Erik. 2005. SPIDA-Web. Conservation in Practice 6(1):35-36. On the use of artificial neural networks in 

species taxonomy.  
 Ripley, Brian D. (1996) Pattern Recognition and Neural Networks, Cambridge  
 Siegelmann, H.T. and Sontag, E.D. (1994). Analog computation via neural networks, Theoretical Computer 

Science, v. 131, no. 2, pp. 331–360. electronic version  
 Sergios Theodoridis, Konstantinos Koutroumbas (2009) "Pattern Recognition" , 4th Edition, Academic Press, 

ISBN: 978-1-59749-272-0.  
 Smith, Murray (1993) Neural Networks for Statistical Modeling, Van Nostrand Reinhold, ISBN 0-442-01310-8  
 Wasserman, Philip (1993) Advanced Methods in Neural Computing, Van Nostrand Reinhold, ISBN 0-442-00461-3  
 

 

16. Perceptron 
The perceptron is a type of artificial neural network invented in 1957 at the Cornell Aeronautical Laboratory by 
Frank Rosenblatt. It can be seen as the simplest kind of feedforward neural network: a linear classifier. 

Definition 
The Perceptron is a binary classifier that maps its input x (a real-valued vector) to an output value f(x) (a single 
binary value) across the matrix. 

 
where w is a vector of real-valued weights and is the dot product (which computes a weighted sum). b is 
the 'bias', a constant term that does not depend on any input value. 
The value of f(x) (0 or 1) is used to classify x as either a positive or a negative instance, in the case of a binary 
classification problem. The bias can be thought of as offsetting the activation function, or giving the output 
neuron a "base" level of activity. If b is negative, then the weighted combination of inputs must produce a positive 
value greater than | b | in order to push the classifier neuron over the 0 threshold. Spatially, the bias alters the 
position (though not the orientation) of the decision boundary. 

Since the inputs are fed directly to the output unit via the weighted connections, the perceptron can be 
considered the simplest kind of feed-forward neural network. 

Learning algorithm 
The learning algorithm is the same across all neurons, therefore everything that follows is applied to a single 
neuron in isolation. We first define some variables: 

 x(j) denotes the j-th item in the n-dimensional input vector  

 w(j) denotes the j-th item in the weight vector  

 f(x) denotes the output from the neuron when presented with input x  

 α is a constant where (learning rate)  
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Further, assume for convenience that the bias term b is zero. This is not a restriction since an extra dimension n + 1 
can be added to the input vectors x with x(n + 1) = 1, in which case w(n + 1) replaces the bias term. 

 The appropriate weights are applied to the inputs, and the 
resulting weighted sum passed to a function which produces 
the output y. 
Learning is modeled as the weight vector being updated for 
multiple iterations over all training examples. Let 

denote a training 
set of m training examples, where xi is the input vector to the 
perceptron and yi is the desired output value of the perceptron 
for that input vector. 

Each iteration the weight vector is updated as follows: 
For each (x,y) pair in 

 

 
Note that this means that a change in the weight vector will only take place for a given training example (x,y) if its 
output f(x) is different from the desired output y. 
The initialization of w is usually performed simply by setting w(j): = 0 for all elements w(j). 

Separability and Convergence 
The training set Dm is said to be linearly separable if there exists a positive constant γ and a weight vector w such 

that for all i. That is, if we say that w is the weight vector to the perceptron, then the 

output of the perceptron, , multiplied by the desired output of the perceptron, yi, must be greater 
than the positive constant, γ, for all input-vector/output-value pairs (xi,yi) in Dm. 

Novikoff (1962) proved that the perceptron algorithm converges after a finite number of iterations if the data set 
is linearly separable. The idea of the proof is that the weight vector is always adjusted by a bounded amount in a 

direction that it has a negative dot product with, and thus can be bounded above by where t is the 
number of changes to the weight vector, but it can also be bounded below by O(t) because if there exists an 
(unknown) satisfactory weight vector, then every change makes progress in this (unknown) direction by a positive 
amount that depends only on the input vector. This can be used to show that the number of mistakes (changes to 
the weight vector, i.e. t) is bounded by (2R / γ)2 where R is the maximum norm of an input vector. However, if the 
training set is not linearly separable, the above online algorithm will not converge. 
Note that the decision boundary of a perceptron is invariant with respect to scaling of the weight vector, i.e. a 
perceptron trained with initial weight vector w and learning rate α is an identical estimator to a perceptron trained 
with initial weight vector w / α and learning rate 1. Thus, since the initial weights become irrelevant with increasing 
number of iterations, the learning rate does not matter in the case of the perceptron and is usually just set to one. 

Variants 
The pocket algorithm with ratchet (Gallant, 1990) solves the stability problem of perceptron learning by keeping 
the best solution seen so far "in its pocket". The pocket algorithm then returns the solution in the pocket, rather 
than the last solution. 
The α-perceptron further utilised a preprocessing layer of fixed random weights, with thresholded output units. 
This enabled the perceptron to classify analogue patterns, by projecting them into a binary space. In fact, for a 
projection space of sufficiently high dimension, patterns can become linearly separable. 
As an example, consider the case of having to classify data into two classes. Here is a small such data set, 
consisting of two points coming from two Gaussian distributions. 

A linear classifier can only separate things with a hyperplane, so it's not possible to classify all the examples 
perfectly. On the other hand, we may project the data into a large number of dimensions. In this case a random 
matrix was used to project the data linearly to a 1000-dimensional space; then each resulting data point was 
transformed through the hyperbolic tangent function. A linear classifier can then separate the data, as shown in 
the third figure. However the data may still not be completely separable in this space, in which the perceptron 
algorithm would not converge. In the example shown, stochastic steepest gradient descent was used to adapt the 
parameters. 
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Furthermore, by adding nonlinear layers between the input and output, one can separate all data and indeed, with 
enough training data, model any well-defined function to arbitrary precision. This model is a generalization known 
as a multilayer perceptron. 
It should be kept in mind, however, that the best classifier is not necessarily that which classifies all the training 
data perfectly. Indeed, if we had the prior constraint that the data come from equi-variant Gaussian distributions, 
the linear separation in the input space is optimal. 
Other training algorithms for linear classifiers are possible: see, e.g., support vector machine and logistic 
regression. 

Multiclass perceptron 
Like most other techniques for training linear classifiers, the perceptron generalizes naturally to multiclass 
classification. Here, the input x and the output y are drawn from arbitrary sets. A feature representation function 
f(x,y) maps each possible input/output pair to a finite-dimensional real-valued feature vector. As before, the 
feature vector is multiplied by a weight vector w, but now the resulting score is used to choose among many 
possible outputs: 

 
Learning again iterates over the examples, predicting an output for each, leaving the weights unchanged when 
the predicted output matches the target, and changing them when it does not. The update becomes: 

 
This multiclass formulation reduces to the original perceptron when x is a real-valued vector, y is chosen from 
{0,1}, and f(x,y) = yx. 
For certain problems, input/output representations and features can be chosen so that 

can be found efficiently even though y is chosen from a very large or even infinite set. 

In recent years, perceptron training has become popular in the field of natural language processing for such tasks 
as part-of-speech tagging and syntactic parsing (Collins, 2002). 

History 
Although the perceptron initially seemed promising, it was eventually proved that perceptrons could not be 
trained to recognise many classes of patterns. This led to the field of neural network research stagnating for many 
years, before it was recognised that a feedforward neural network with two or more layers (also called a 
multilayer perceptron) had far greater processing power than perceptrons with one layer (also called a single layer 
perceptron). Single layer perceptrons are only capable of learning linearly separable patterns; in 1969 a famous 
book entitled Perceptrons by Marvin Minsky and Seymour Papert showed that it was impossible for these classes 
of network to learn an XOR function. They conjectured (incorrectly) that a similar result would hold for a 
perceptron with three or more layers. Three years later Stephen Grossberg published a series of papers 
introducing networks capable of modelling differential, contrast-enhancing and XOR functions. (The papers were 
published in 1972 and 1973, see e.g.: Grossberg, Contour enhancement, short-term memory, and constancies in 
reverberating neural networks. Studies in Applied Mathematics, 52 (1973), 213-257, online [1]). Nevertheless the 
often-cited Minsky/Papert text caused a significant decline in interest and funding of neural network research. It 
took ten more years until neural network research experienced a resurgence in the 1980s. This text was reprinted 
in 1987 as "Perceptrons - Expanded Edition" where some errors in the original text are shown and corrected. 
More recently, interest in the perceptron learning algorithm has increased again after Freund and Schapire (1998) 
presented a voted formulation of the original algorithm (attaining large margin) and suggested that one can apply 
the kernel trick to it. 
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